- Award ID(s):
- 1654379
- PAR ID:
- 10421553
- Editor(s):
- Tanihata, I; Toki, H; Kajino, T
- Date Published:
- Journal Name:
- Handbook for Nuclear Physics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.more » « less
-
In terahertz (THz) photonics, there is an ongoing effort to develop thin, compact devices such as dielectric photonic crystal (PhC) slabs with desirable light–matter interactions. However, previous works in THz PhC slabs have been limited to rigid substrates with thicknesses
of micrometers. Dielectric PhC slabs have been shown to possess in-plane modes that are excited by external radiation to produce sharp guided-mode resonances with minimal absorption for applications in sensors, optics, and lasers. Here we confirm the existence of guided resonances in a membrane-type THz PhC slab with subwavelength ( ) thicknesses of flexible dielectric polyimide films. The transmittance of the guided resonances was measured for different structural parameters of the unit cell. Furthermore, we exploited the flexibility of the samples to modulate the guided modes for a bend angle of , confirmed experimentally by the suppression of these modes. The mechanical flexibility of the device allows for an additional degree of freedom in system design for high-speed communications, soft wearable photonics, and implantable medical devices. -
Optical resonances in nanostructures can be harnessed to produce a wide range of structural colors. Conversely, the analysis of structural colors has been used to clarify the nature of optical resonances. Here, we show that silicon nanowire (NW) pairs can display a wide range of structural colors by controlling their radiative coupling. This is accomplished by exciting a series of Fabry–Pérot-like modes where light is repeatedly scattered between two NWs. These modes are beyond the expectation from the conventional chemical bonding model under a quasi-electrostatic approximation, in which only bonding and antibonding modes can be formed in a pair system through modal hybridization. The additional eigenmodes found in a two-resonator system originate from the nonlinear, frequency-dependent coupling strength derived from the radiative nature of low-
Q resonators. The Fabry–Pérot modes can be tuned across the entire visible frequency range by varying the distance between two NWs, leading to what we believe is a new type of universal building blocks that can provide structural color within a subwavelength footprint. The presented results pave the way toward the design and usage of highly tunable resonances that exploit the radiative coupling of high-index nanostructures. -
ABSTRACT Diversity in the properties of exoplanetary systems arises, in part, from dynamical evolution that occurs after planet formation. We use numerical integrations to explore the relative role of secular and resonant dynamics in the long-term evolution of model planetary systems, made up of three equal mass giant planets on initially eccentric orbits. The range of separations studied is dominated by secular processes, but intersects chains of high-order mean-motion resonances. Over time-scales of 108 orbits, the secular evolution of the simulated systems is predominantly regular. High-order resonant chains, however, can be a significant source of angular momentum deficit (AMD), leading to instability. Using a time series analysis based on a Hilbert transform, we associate instability with broad islands of chaotic evolution. Previous work has suggested that first-order resonances could modify the AMD of nominally secular systems and facilitate secular chaos. We find that higher order resonances, when present in chains, can have similar impacts.
-
Abstract Neptune’s external mean-motion resonances play an important role in sculpting the observed population of trans-Neptunian objects (TNOs). The population of scattering TNOs is known to “stick” to Neptune's resonances while evolving in semimajor axis (
a ), though simulations show that resonance sticking is less prevalent ata ≳ 200–250 au. Here we present an extensive numerical exploration of the strengths of Neptune's resonances for scattering TNOs with perihelion distancesq = 33 au. We show that the drop-off in resonance sticking for the largea scattering TNOs is not a generic feature of scattering dynamics but can instead be attributed to the specific configuration of Neptune and Uranus in our solar system. In simulations with just Uranus removed from the giant planet system, Neptune's resonances are strong in the scattering population out to at least ∼300 au. Uranus and Neptune are near a 2:1 period ratio, and the variations in Neptune's orbit resulting from this near-resonance are responsible for destabilizing Neptune's resonances for high-e TNO orbits beyond the ∼20:1 resonance ata ≈ 220 au. Direct interactions between Uranus and the scattering population are responsible for slightly weakening Neptune's closer-in resonances. In simulations where Neptune and Uranus are placed in their mutual 2:1 resonance, we see almost no stable libration of scattering particles in Neptune's external resonances. Our results have important implications for how the strengths of Neptune's distant resonances varied during the epoch of planet migration when the Neptune–Uranus period ratio was evolving. These strength variations likely affected the distant scattering, resonant, and detached TNO populations.