The ability of symbionts to recolonize their hosts after a period of dysbiosis is essential to maintain a resilient partnership. Many cnidarians rely on photosynthate provided from a large algal symbiont population. Under periods of thermal stress, symbiont densities in host cnidarians decline, and the recovery of hosts is dependent on the re-establishment of symbiosis. The cellular mechanisms that govern this process of colonization are not well-defined and require further exploration. To study this process in the symbiotic sea anemone model Exaiptasia diaphana , commonly called Aiptasia, we developed a non-invasive, efficient method of imaging that uses autofluorescence to measure the abundance of symbiont cells, which were spatially distributed into distinct cell clusters within the gastrodermis of host tentacles. We estimated cell cluster sizes to measure the occurrence of singlets, doublets, and so on up to much larger cell clusters, and characterized colonization patterns by native and non-native symbionts. Native symbiont Breviolum minutum rapidly recolonized hosts and rapidly exited under elevated temperature, with increased bleaching susceptibility for larger symbiont clusters. In contrast, populations of non-native symbionts Symbiodinium microadriaticum and Durusdinium trenchii persisted at low levels under elevated temperature. To identify mechanisms driving colonization patterns, we simulated symbiont population changes through time and determined that migration was necessary to create observed patterns (i.e., egression of symbionts from larger clusters to establish new clusters). Our results support a mechanism where symbionts repopulate hosts in a predictable cluster pattern, and provide novel evidence that colonization requires both localized proliferation and continuous migration.
more »
« less
Nutrient dynamics in coral symbiosis depend on both the relative and absolute abundance of Symbiodiniaceae species
Abstract Background Symbionts provide a variety of reproductive, nutritional, and defensive resources to their hosts, but those resources can vary depending on symbiont community composition. As genetic techniques open our eyes to the breadth of symbiont diversity within myriad microbiomes, symbiosis research has begun to consider what ecological mechanisms affect the identity and relative abundance of symbiont species and how this community structure impacts resource exchange among partners. Here, we manipulated the in hospite density and relative ratio of two species of coral endosymbionts ( Symbiodinium microadriaticum and Breviolum minutum ) and used stable isotope enrichment to trace nutrient exchange with the host, Briareum asbestinum . Results The patterns of uptake and translocation of carbon and nitrogen varied with both density and ratio of symbionts. Once a density threshold was reached, carbon acquisition decreased with increasing proportions of S. microadriaticum . In hosts dominated by B. minutum , nitrogen uptake was density independent and intermediate. Conversely, for those corals dominated by S. microadriaticum , nitrogen uptake decreased as densities increased, and as a result, these hosts had the overall highest (at low density) and lowest (at high density) nitrogen enrichment. Conclusions Our findings show that the uptake and sharing of nutrients was strongly dependent on both the density of symbionts within the host, as well as which symbiont species was dominant. Together, these complex interactive effects suggest that host regulation and the repression of in hospite symbiont competition can ultimately lead to a more productive mutualism.
more »
« less
- Award ID(s):
- 1754449
- PAR ID:
- 10421624
- Date Published:
- Journal Name:
- Microbiome
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2049-2618
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Increasing ocean temperatures are causing dysbiosis between coral hosts and their symbionts. Previous work suggests that coral host gene expression responds more strongly to environmental stress compared to their intracellular symbionts; however, the causes and consequences of this phenomenon remain untested. We hypothesized that symbionts are less responsive because hosts modulate symbiont environments to buffer stress. To test this hypothesis, we leveraged the facultative symbiosis between the scleractinian coralOculina arbusculaand its symbiontBreviolum psygmophilumto characterize gene expression responses of both symbiotic partners in and ex hospite under thermal challenges. To characterize host and in hospite symbiont responses, symbiotic and aposymbioticO. arbusculawere exposed to three treatments: (1) control (18°C), (2) heat (32°C), and (3) cold (6°C). This experiment was replicated withB. psygmophilumcultured fromO. arbusculato characterize ex hospite symbiont responses. Both thermal challenges elicited classic environmental stress responses (ESRs) inO. arbuscularegardless of symbiotic state, with hosts responding more strongly to cold challenge. Hosts also exhibited stronger responses than in hospite symbionts. In and ex hospiteB. psygmophilumboth down‐regulated gene ontology pathways associated with photosynthesis under thermal challenge; however, ex hospite symbionts exhibited greater gene expression plasticity and differential expression of genes associated with ESRs. Taken together, these findings suggest thatO. arbusculahosts may buffer environments ofB. psygmophilumsymbionts; however, we outline the future work needed to confirm this hypothesis.more » « less
-
Queller, David (Ed.)The cnidarian–dinoflagellate symbiosis relies on the regulation of resident symbiont populations to maintain biomass stability; however, the relative importance of host regulatory mechanisms [cell-cycle arrest (CC), apoptosis (AP), autophagy (AU), and expulsion (EX)] during symbiosis onset and maintenance is largely unknown. Here, we inoculated a symbiont-free (aposymbiotic) model cnidarian (Exaiptasia diaphana: “Aiptasia”) with either its native symbiont Breviolum minutum or one of three non-native symbionts: Symbiodinium microadriaticum, Cladocopium goreaui, and Durusdinium trenchii. We then measured and compared host AP, host AU, symbiont EX, and symbiont cell-cycle phase for up to a year with these different symbionts and used these discrete measurements to inform comparative models of symbiont population regulation. Our models showed a general pattern, where regulation through AP and AU is reduced after onset, followed by an overshoot of the symbiont population that requires a strong regulatory response, dealt with by strong CC and increased EX. As colonization progresses into symbiosis maintenance, CC remains crucial for achieving steady-state symbiont populations, with our models estimating that CC regulates 10-fold more cells (60 to 90%) relative to the other mechanisms. Notably though, our models also revealed that D. trenchii is less tightly regulated than B. minutum, consistent with D. trenchii’s reputation as a suboptimal partner for this cnidarian. Overall, our models suggest that single regulatory mechanisms do not accurately replicate observed symbiont colonization patterns, reflecting the importance of all mechanisms working concomitantly. This ultimately sheds light on the cell biology underpinning the stability of this ecologically significant symbiosis.more » « less
-
Mutualistic symbioses are common, especially in nutrient-poor environments where an association between hosts and symbionts can allow the symbiotic partners to persist and collectively out-compete non-symbiotic species. Usually these mutualisms are built on an intimate transfer of energy and nutrients (e.g. carbon and nitrogen) between host and symbiont. However, resource availability is not consistent, and the benefit of the symbiotic association can depend on the availability of resources to mutualists. We manipulated the diets of two temperate sea anemone species in the genus Anthopleura in the field and recorded the responses of sea anemones and algal symbionts in the family Symbiodiniaceae to our treatments. Algal symbiont density, symbiont volume and photosynthetic efficiency of symbionts responded to changes in sea anemone diet, but the responses depended on the species of sea anemone. We suggest that temperate sea anemones and their symbionts can respond to changes in anemone diet, modifying the balance between heterotrophy and autotrophy in the symbiosis. Our data support the hypothesis that symbionts are upregulated or downregulated based on food availability, allowing for a flexible nutritional strategy based on external resources.more » « less
-
In mesophotic coral ecosystems, reef-building corals and their photosynthetic symbionts can survive with less than 1% of surface irradiance. How depth-specialist corals rely upon autotrophically and heterotrophically derived energy sources across the mesophotic zone remains unclear. We analysed the stable carbon (δ13C) and nitrogen (δ15N) isotope values of aLeptoseriscommunity from the ‘Au‘au Channel, Maui, Hawai‘i (65–125 m) including four coral host species living symbiotically with three algal haplotypes. We characterized the isotope values of hosts and symbionts across species and depth to compare trophic strategies. Symbiontδ13C was consistently 0.5‰ higher than hostδ13C at all depths. Mean colony host and symbiontδ15N differed by up to 3.7‰ at shallow depths and converged at deeper depths. These results suggest that both heterotrophy and autotrophy remained integral to colony survival across depth. The increasing similarity between host and symbiontδ15N at deeper depths suggests that nitrogen is more efficiently shared between mesophotic coral hosts and their algal symbionts to sustain autotrophy. Isotopic trends across depth did not generally vary by host species or algal haplotype, suggesting that photosynthesis remains essential toLeptoserissurvival and growth despite low light availability in the mesophotic zone.more » « less
An official website of the United States government

