Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO 2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO 2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO 2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO 2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO 2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO 2 variability may promote more acidification-resilient coral populations in a changing climate.
more »
« less
Branching coral morphology affects physiological performance in the absence of colony integration
For nearly 50 years, analyses of coral physiology have used small coral fragments (nubbins) to make inferences about larger colonies. However, scaling in corals shows that linear extrapolations from nubbins to whole colonies can be misleading, because polyps in nubbins are divorced of their morphologically complex and physiologically integrated corallum. We tested for the effects of integration among branches in determining size-dependent calcification of the coral Pocillopora spp. under elevated P CO 2 . Area-normalized net calcification was compared between branches (nubbins), aggregates of nubbins (complex morphologies without integration) and whole colonies (physiologically integrated) at 400 versus approximately 1000 µatm P CO 2 . Net calcification was unaffected by P CO 2 , but differed among colony types. Single nubbins grew faster than whole colonies, but when aggregated, nubbins changed calcification to match whole colonies even though they lacked integration among branches. Corallum morphology causes the phenotype of branching corals to differ from the summation of their branches.
more »
« less
- PAR ID:
- 10421685
- Date Published:
- Journal Name:
- Biology Letters
- Volume:
- 18
- Issue:
- 12
- ISSN:
- 1744-957X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Banaszak, A (Ed.)Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.more » « less
-
The threat represented by ocean acidification (OA) for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR) is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet), and between PAR and community net calcification (Gnet), using experiments on three coral communities constructed to match (i) the back reef of Mo'orea, French Polynesia, (ii) the fore reef of Mo'orea, and (iii) the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu). For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.more » « less
-
Abstract Ecosystem responses to disturbance depend on the nature of the perturbation and the ecological legacies left behind, making it critical to understand how climate‐driven changes in disturbance regimes modify resilience properties of ecosystems. For coral reefs, recent increases in severe marine heat waves now co‐occur with powerful storms, the historic agent of disturbance. While storms kill coral and remove their skeletons, heat waves bleach and kill corals but leave their skeletons intact. Here, we explored how the material legacy of dead coral skeletons modifies two key ecological processes that underpin coral reef resilience: the ability of herbivores to control macroalgae (spatial competitors of corals), and the replenishment of new coral colonies. Our findings, grounded by a major bleaching event at our long‐term study locale, revealed that the presence of structurally complex dead skeletons reduced grazing on turf algae by ~80%. For macroalgae, browsing was reduced by >40% on less preferred (unpalatable) taxa, but only by ~10% on more preferred taxa. This enabled unpalatable macroalgae to reach ~45% cover in 2 years. By contrast, herbivores prevented macroalgae from becoming established on adjacent reefs that lacked skeletons. Manipulation of unpalatable macroalgae revealed that the cover reached after 1 year (~20%) reduced recruitment of corals by 50%. The effect of skeletons on juvenile coral growth was contingent on the timing of settlement relative to the disturbance. If corals settled directly after bleaching (before macroalgae colonized), dead skeletons enhanced colony growth by 34%, but this benefit was lost if corals colonized dead skeletons a year after the disturbance once macroalgae had proliferated. These findings underscore how a material legacy from a changing disturbance regime can alter ecosystem resilience properties by disrupting key trophic and competitive interactions that shape post‐disturbance community dynamics.more » « less
-
Abstract As mass bleaching events decimate stony coral populations, production of calcium carbonate is diminished on reefs, dampening their capacity to keep pace with rising sea levels. However, perturbations to the calcification process of surviving wild corals during bleaching are poorly constrained, owing to the lack of suitable techniques to retroactively extract this information from coral skeletons at sufficient resolution. Here, we use novel Raman spectrometry techniques to test the biogeochemical response of long‐lived corals before, during, and after bleaching. Maintenance of high aragonite saturation state (ΩAr) in the coral calcifying fluid is key to driving rapid skeletal growth but would be expected to decrease when corals become energetically depleted without their symbionts. Contrary to this expectation, our results demonstrate that corals upregulate calcifying fluid ΩArduring bleaching and for at least 2 yr after recovery. This indicates that the calcification process of coral‐bleaching survivors is unexpectedly resilient.more » « less
An official website of the United States government

