skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Water Year 2021 Compound Precipitation and Temperature Extremes in California and Nevada
Anthropogenically forced-warming and La Niña forced-precipitation deficits caused at least a sixfold risk increase for compound extreme low precipitation and high temperature in California–Nevada from October 2020 to September 2021.  more » « less
Award ID(s):
2214697
NSF-PAR ID:
10421697
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
Volume:
103
Issue:
12
ISSN:
0003-0007
Page Range / eLocation ID:
E2905 to E2911
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anthropogenically forced-warming and La Niña forced-precipitation deficits caused at least a sixfold risk increase for compound extreme low precipitation and high temperature in California–Nevada from October 2020 to September 2021. 
    more » « less
  2. Abstract

    The US Southwest is in a drought crisis that has been developing over the past two decades, contributing to marked increases in burned forest areas and unprecedented efforts to reduce water consumption. Climate change has contributed to this ongoing decadal drought via warming that has increased evaporative demand and reduced snowpack and streamflows. However, on the supply side, precipitation has been low during the 21st century. Here, using simulations with an atmosphere model forced by imposed sea surface temperatures, we show that the 21st century shift to cooler tropical Pacific sea surface temperatures forced a decline in cool season precipitation that in turn drove a decline in spring to summer soil moisture in the southwest. We then project the near-term future out to 2040, accounting for plausible and realistic natural decadal variability of the Pacific and Atlantic Oceans and radiatively-forced change. The future evolution of decadal variability in the Pacific and Atlantic will strongly influence how wet or dry the southwest is in coming decades as a result of the influence on cool season precipitation. The worst-case scenario involves a continued cold state of the tropical Pacific and the development of a warm state of the Atlantic while the best case scenario would be a transition to a warm state of the tropical Pacific and the development of a cold state of the Atlantic. Radiatively-forced cool season precipitation reduction is strongest if future forced SST change continues the observed pattern of no warming in the equatorial Pacific cold tongue. Although this is a weaker influence on summer soil moisture than natural decadal variability, no combination of natural decadal variability and forced change ensures a return to winter precipitation or summer soil moisture levels as high as those in the final two decades of the 20th century.

     
    more » « less
  3. null (Ed.)
    Abstract Southeastern South America (SESA; encompassing Paraguay, Southern Brazil, Uruguay, and northern Argentina) experienced a 27% increase in austral summer precipitation from 1902-2019, one of the largest observed trends in seasonal precipitation globally. Previous research identifies Atlantic Multidecadal Variability and anthropogenic forcing from stratospheric ozone depletion and greenhouse gas emissions as key factors contributing to the positive precipitation trends in SESA. We analyze multi-model ensemble simulations from Phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP) and find that not only do Earth System Models simulate positive SESA precipitation trends that are much weaker over the historical interval, but some models persistently simulate negative SESA precipitation trends under historical forcings. Similarly, 16-member ensembles from two atmospheric models forced with observed historical sea surface temperatures never simulate precipitation trends that even reach the lower bound of the observed trend’s range of uncertainty. Moreover, while future 21 st -century projections from CMIP6 yield positive ensemble mean precipitation trends over SESA that grow with increasing greenhouse-gas emissions, the mean forced response never exceeds the observed historical trend. Pre-industrial control runs from CMIP6 indicate that some models do occasionally simulate centennial-scale trends in SESA that fall within the observational range, but most models do not. Results point to significant uncertainties in the attribution of anthropogenically forced influences on the observed increases in precipitation over SESA, while also suggesting that internal decadal-to-centennial variability of unknown origin and not present in state-of-the-art models may have also played a large role in generating the 20 th -21 st -century SESA precipitation trend. 
    more » « less
  4. Much of the eastern United States experienced increased precipitation over the twentieth century. Characterizing these trends and their causes is critical for assessing future hydroclimate risks. Here, U.S. precipitation trends are analyzed for 1895–2016, revealing that fall precipitation in the southeastern region north of the Gulf of Mexico (SE-Gulf) increased by nearly 40%, primarily increasing after the mid-1900s. Because fall is the climatological dry season in the SE-Gulf and precipitation in other seasons changed insignificantly, the seasonal precipitation cycle diminished substantially. The increase in SE-Gulf fall precipitation was caused by increased southerly moisture transport from the Gulf of Mexico, which was almost entirely driven by stronger winds associated with enhanced anticyclonic circulation west of the North Atlantic subtropical high (NASH) and not by increases in specific humidity. Atmospheric models forced by observed SSTs and fully coupled models forced by historical anthropogenic forcing do not robustly simulate twentieth-century fall wetting in the SE-Gulf. SST-forced atmospheric models do simulate an intensified anticyclonic low-level circulation around the NASH, but the modeled intensification occurred farther west than observed. CMIP5 analyses suggest an increased likelihood of positive SE-Gulf fall precipitation trends given historical and future GHG forcing. Nevertheless, individual model simulations (both SST forced and fully coupled) only very rarely produce the observed magnitude of the SE-Gulf fall precipitation trend. Further research into model representation of the western ridge of the fall NASH is needed, which will help us to better predict whether twentieth-century increases in SE-Gulf fall precipitation will persist into the future.

     
    more » « less
  5. Abstract

    A recent study has shown a robust relationship between the Pacific Decadal Oscillation (PDO) and inter‐decadal variations in autumn precipitation over North Central China (NCC). However, the physical processes underlying these inter‐decadal precipitation variations are not fully understood. Here we analyse multi‐member ensembles of atmospheric reanalysis and model simulations to examine the atmospheric and precipitation responses to sea surface temperature (SST) forcing. Despite the large inter‐member spread resulting from atmospheric internal variability, the model simulations forced by the observed SSTs show an important role of mid‐latitude atmospheric circulation in influencing the inter‐decadal precipitation variations over NCC. We also analyse the sensitivity experiments using three atmospheric models forced by the Inter‐decadal Pacific Oscillation (IPO)/PDO‐like SST fields. The results suggest that the SST anomalies associated with a negative IPO phase can induce anomalous positive pressure anomalies over the East Asia‐Japan‐North Pacific region, which weakens the East Asian trough (EAT) and produces southerly advection of warm and moist air into NCC, leading to increased precipitation there. This study provides a depiction of how the IPO/PDO‐associated SSTs induce inter‐decadal oscillations in mid‐latitude atmospheric circulations, which in turn cause inter‐decadal precipitation variations over NCC.

     
    more » « less