Understanding the viscosity of mantlederived magmas is needed to model their migration mechanisms and ascent rate from the source rock to the surface. High pressure–temperature experimental data are now available on the viscosity of synthetic melts, pure carbonatitic to carbonate–silicate compositions, anhydrous basalts, dacites and rhyolites. However, the viscosity of volatilebearing melilititic melts, among the most plausible carriers of deep carbon, has not been investigated. In this study, we experimentally determined the viscosity of synthetic liquids with ~31 and ~39 wt% SiO2, 1.60 and 1.42 wt% CO2 and 5.7 and 1 wt% H2O, respectively, at pressures from 1 to 4.7 GPa and temperatures between 1265 and 1755 °C, using the fallingsphere technique combined with in situ Xray radiography. Our results show viscosities between 0.1044 and 2.1221 Pa·s, with a clear dependence on temperature and SiO2 content. The atomic structure of both melt compositions was also determined at high pressure and temperature, using in situ multiangle energydispersive Xray diffraction supported by ex situ microFTIR and microRaman spectroscopic measurements. Our results yield evidence that the T–T and T–O (T = Si,Al) interatomic distances of ultrabasic melts are higher than those for basaltic melts known from similar recent studies. Based on our experimentalmore »
Multicomponent diffusion in a basaltic melt: Temperature dependence
Eighteen successful diffusion couple experiments in 8component SiO2–TiO2–Al2O3–FeO–MgO–CaO–Na2O–K2O basaltic melts were conducted at 1260°C and 0.5 GPa and at 1500°C and 1.0 GPa. These experiments are combined with previous data at 1350°C and 1.0 GPa (Guo and Zhang, 2018) to study the temperature dependence of multicomponent diffusion in basaltic melts. Effective binary diffusion coefficients of components with monotonic diffusion profiles were extracted and show a strong dependence on their counterdiffusing component even though the average (or interface) compositions are the same. The diffusion matrix at 1260°C was obtained by simultaneously fitting diffusion profiles of all diffusion couple experiments as well as appropriate data from the literature. All features of concentration profiles in both diffusion couples and mineral dissolution are well reproduced by this new diffusion matrix. At 1500°C, only diffusion couple experiments are used to obtain the diffusion matrix. Eigenvectors of the diffusion matrix are used to discuss the diffusion (exchange) mechanism, and eigenvalues characterize the diffusion rate. Diffusion mechanisms at both 1260 and 1500°C are inferred from eigenvectors of diffusion matrices and compared with those at 1350°C reported in Guo and Zhang (2018). There is indication that diffusion eigenvectors in basaltic melts do not depend much on temperature, but more »
 Publication Date:
 NSFPAR ID:
 10161017
 Journal Name:
 Chemical geology
 Volume:
 549
 Issue:
 119700
 Page Range or eLocationID:
 122
 ISSN:
 00092541
 Sponsoring Org:
 National Science Foundation
More Like this


Ironrich phyllosilicates on Mars comprise nearly 90% of the H2O and OHbearing phases observed directly by rovers and remotely by orbiters (Chemtob et al., 2017, JGR). Theories concerning the possible origin of Ferich smectite during Mars’ earliest history (phyllosian) are hard to test because of limited knowledge of the upperthermal stability of Ferich phyllosilicates. In this study we present data on the upperthermal stability of a pureiron smectite to put some minimum constraints on its possible hightemperature origin early in Mars history either from a primordial atmosphere or by hydrothermal activity. Smectite coexisting with quartz and magnetite was synthesized from the oxides in the system Na2OFeOFe2O3Al2O3SiO2H2O at 500°C and 2 kbar and fO2 near FMQ. Reversal experiments involved mixtures with equal portions of the smectitesynthesis and breakdown products (quartz, fayalite, albite, magnetite (mt) treated in the presence of about 10 wt% H2O over the range of 13 kbar and 530640°C. The average composition (electron microprobe) of smectite formed both in synthesis and in reversal experiments was Na0.35(Fe2+2.28Fe3+0.31Al0.41)(Al1.07Si2.93)O10(OH)2·nH2O, where ferric iron was calculated by summing the octahedral cations to 3.0. Reversals for the reaction smec+mt1 = fayalite+albite+mt2+quartz+H2O were obtained at 538±8, 590±10, and 610±10°C at 1, 2, and 3 kbar, respectively,more »

Abstract Covariance matrices are fundamental to the analysis and forecast of economic, physical and biological systems. Although the eigenvalues $\{\lambda _i\}$ and eigenvectors $\{\boldsymbol{u}_i\}$ of a covariance matrix are central to such endeavours, in practice one must inevitably approximate the covariance matrix based on data with finite sample size $n$ to obtain empirical eigenvalues $\{\tilde{\lambda }_i\}$ and eigenvectors $\{\tilde{\boldsymbol{u}}_i\}$, and therefore understanding the error so introduced is of central importance. We analyse eigenvector error $\\boldsymbol{u}_i  \tilde{\boldsymbol{u}}_i \^2$ while leveraging the assumption that the true covariance matrix having size $p$ is drawn from a matrix ensemble with known spectral properties—particularly, we assume the distribution of population eigenvalues weakly converges as $p\to \infty $ to a spectral density $\rho (\lambda )$ and that the spacing between population eigenvalues is similar to that for the Gaussian orthogonal ensemble. Our approach complements previous analyses of eigenvector error that require the full set of eigenvalues to be known, which can be computationally infeasible when $p$ is large. To provide a scalable approach for uncertainty quantification of eigenvector error, we consider a fixed eigenvalue $\lambda $ and approximate the distribution of the expected square error $r= \mathbb{E}\left [\ \boldsymbol{u}_i  \tilde{\boldsymbol{u}}_i \^2\right ]$ across themore »

Throughout many scientific and engineering fields, including control theory, quantum mechanics, advanced dynamics, and network theory, a great many important applications rely on the spectral decomposition of matrices. Traditional methods such as the power iteration method, Jacobi eigenvalue method, and QR decomposition are commonly used to compute the eigenvalues and eigenvectors of a square and symmetric matrix. However, these methods suffer from certain drawbacks: in particular, the power iteration method can only find the leading eigenpair (i.e., the largest eigenvalue and its corresponding eigenvector), while the Jacobi and QR decomposition methods face significant performance limitations when facing with large scale matrices. Typically, even producing approximate eigenpairs of a general square matrix requires at least O(N^3) time complexity, where N is the number of rows of the matrix. In this work, we exploit the newly developed memristor technology to propose a lowcomplexity, scalable memristorbased method for deriving a set of dominant eigenvalues and eigenvectors for real symmetric nonnegative matrices. The time complexity for our proposed algorithm is O(N^2 /Δ) (where Δ governs the accuracy). We present experimental studies to simulate the memristorsupporting algorithm, with results demonstrating that the average error for our method is within 4%, while its performance is upmore »

Phase egg, [AlSiO3(OH)], is an aluminosilicate hydrous mineral that is thermodynamically stable in lithological compositions represented by Al2O3SiO2H2O (ASH) ternary, i.e., a simplified ternary for the mineralogy of subducted sediments and continental crustal rocks. Highpressure and hightemperature experiments on lithological compositions resembling hydrated sedimentary layers in subducting slabs show that phase egg is stable up to pressures of 20–30 GPa, which translates to the transition zone to lower mantle depths. Thus, phase egg is a potential candidate for transporting water into the Earth’s mantle transition zone. In this study, we use firstprinciples simulations based on density functional theory to explore the pressure dependence of crystal structure and how it influences energetics and elasticity. Our results indicate that phase egg exhibits anomalous behavior of the pressure dependence of the elasticity at mantle transition zone depths (~15 GPa). Such anomalous behavior in the elasticity is related to changes in the hydrogen bonding OH···O configurations, which we delineate as a transition from a lowpressure to a highpressure structure of phase egg. Full elastic constant tensors indicate that phase egg is very anisotropic resulting in a maximum anisotropy of compressional wave velocity, AvP ≈ 30% and of shear wave velocity, AvS ≈ 17% atmore »