Abstract We establish a connection between the algebraic geometry of the type permutohedral toric variety and the combinatorics of delta‐matroids. Using this connection, we compute the volume and lattice point counts of type generalized permutohedra. Applying tropical Hodge theory to a new framework of “tautological classes of delta‐matroids,” modeled after certain vector bundles associated to realizable delta‐matroids, we establish the log‐concavity of a Tutte‐like invariant for a broad family of delta‐matroids that includes all realizable delta‐matroids. Our results include new log‐concavity statements for all (ordinary) matroids as special cases.
more »
« less
On Hodge-Riemann Cohomology Classes
We prove that Schur classes of nef vector bundles are limits of classes that have a property analogous to the Hodge-Riemann bilinear relations. We give a number of applications, including (1) new log-concavity statements about characteristic classes of nef vector bundles (2) log-concavity statements about Schur and related polynomials (3) another proof that normalized Schur polynomials are Lorentzian.
more »
« less
- Award ID(s):
- 1749447
- PAR ID:
- 10421753
- Editor(s):
- Ivan Cheltsov, Xiuxiong Chen
- Date Published:
- Journal Name:
- Birational Geometry, Kähler–Einstein Metrics and Degenerations
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the ‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric variety.more » « less
-
Abstract Let $$k \leq n$$ be positive integers, and let $$X_n = (x_1, \dots , x_n)$$ be a list of $$n$$ variables. The Boolean product polynomial$$B_{n,k}(X_n)$$ is the product of the linear forms $$\sum _{i \in S} x_i$$, where $$S$$ ranges over all $$k$$-element subsets of $$\{1, 2, \dots , n\}$$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $$B_{n,k}(X_n)$$ for certain $$k$$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $$B_{n,n-1}(X_n)$$ to a bigraded action of the symmetric group $${\mathfrak{S}}_n$$ on a divergence free quotient of superspace.more » « less
-
We prove that the K-k-Schur functions are part of a family of inhomogenous symmetric functions whose top homogeneous components are Catalan functions, the Euler characteristics of certain vector bundles on the flag variety. Lam-Schilling-Shimozono identified the K-k-Schur functions as Schubert representatives for K-homology of the affine Grassmannian for SL_{k+1}. Our perspective reveals that the K-k-Schur functions satisfy a shift invariance property, and we deduce positivity of their branching coefficients from a positivity result of Baldwin and Kumar. We further show that a slight adjustment of our formulation for K-k-Schur functions produces a second shift-invariant basis which conjecturally has both positive branching and a rectangle factorization property. Building on work of Ikeda-Iwao-Maeno, we conjecture that this second basis gives the images of the Lenart-Maeno quantum Grothendieck polynomials under a K-theoretic analog of the Peterson isomorphism.more » « less
An official website of the United States government

