skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: K-theoretic Catalan functions
We prove that the K-k-Schur functions are part of a family of inhomogenous symmetric functions whose top homogeneous components are Catalan functions, the Euler characteristics of certain vector bundles on the flag variety. Lam-Schilling-Shimozono identified the K-k-Schur functions as Schubert representatives for K-homology of the affine Grassmannian for SL_{k+1}. Our perspective reveals that the K-k-Schur functions satisfy a shift invariance property, and we deduce positivity of their branching coefficients from a positivity result of Baldwin and Kumar. We further show that a slight adjustment of our formulation for K-k-Schur functions produces a second shift-invariant basis which conjecturally has both positive branching and a rectangle factorization property. Building on work of Ikeda-Iwao-Maeno, we conjecture that this second basis gives the images of the Lenart-Maeno quantum Grothendieck polynomials under a K-theoretic analog of the Peterson isomorphism.  more » « less
Award ID(s):
1840234
NSF-PAR ID:
10530113
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Advances in Mathematics
Volume:
404
Issue:
PB
ISSN:
0001-8708
Page Range / eLocation ID:
108421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Let $k \leq n$ be positive integers, and let $X_n = (x_1, \dots , x_n)$ be a list of $n$ variables. The Boolean product polynomial$B_{n,k}(X_n)$ is the product of the linear forms $\sum _{i \in S} x_i$, where $S$ ranges over all $k$-element subsets of $\{1, 2, \dots , n\}$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $B_{n,k}(X_n)$ for certain $k$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $B_{n,n-1}(X_n)$ to a bigraded action of the symmetric group ${\mathfrak{S}}_n$ on a divergence free quotient of superspace.

     
    more » « less
  2. null (Ed.)
    Abstract We introduce two new bases of the ring of polynomials and study their relations to known bases. The first basis is the quasi-Lascoux basis, which is simultaneously both a $K$ -theoretic deformation of the quasi-key basis and also a lift of the $K$ -analogue of the quasi-Schur basis from quasi-symmetric polynomials to general polynomials. We give positive expansions of this quasi-Lascoux basis into the glide and Lascoux atom bases, as well as a positive expansion of the Lascoux basis into the quasi-Lascoux basis. As a special case, these expansions give the first proof that the $K$ -analogues of quasi-Schur polynomials expand positively in multifundamental quasi-symmetric polynomials of T. Lam and P. Pylyavskyy. The second new basis is the kaon basis, a $K$ -theoretic deformation of the fundamental particle basis. We give positive expansions of the glide and Lascoux atom bases into this kaon basis. Throughout, we explore how the relationships among these $K$ -analogues mirror the relationships among their cohomological counterparts. We make several “alternating sum” conjectures that are suggestive of Euler characteristic calculations. 
    more » « less
  3. We provide a crystal structure on the set of ordered multiset partitions, which recently arose in the pursuit of the Delta Conjecture. This conjecture was stated by Haglund, Remmel and Wilson as a generalization of the Shuffle Conjecture. Various statistics on ordered multiset partitions arise in the combinatorial analysis of the Delta Conjecture, one of them being the minimaj statistic, which is a variant of the major index statistic on words. Our crystal has the property that the minimaj statistic is constant on connected components of the crystal. In particular, this yields another proof of the Schur positivity of the graded Frobenius series of the generalization $R_{n,k}$ due to Haglund, Rhoades and Shimozono of the coinvariant algebra $R_n$. The crystal structure also enables us to demonstrate the equidistributivity of the minimaj statistic with the major index statistic on ordered multiset partitions. 
    more » « less
  4. We prove that $\omega \Delta ^{\prime}_{e_{k}}e_{n}|_{t=0}$, the symmetric function in the Delta Conjecture at $t=0$, is a skewing operator applied to a Hall-Littlewood polynomial, and generalize this formula to the Frobenius series of all $\Delta $-Springer modules. We use this to give an explicit Schur expansion in terms of the Lascoux-Schützenberger cocharge statistic on a new combinatorial object that we call a battery-powered tableau. Our proof is geometric, and shows that the $\Delta $-Springer varieties of Levinson, Woo, and the second author are generalized Springer fibers coming from the partial resolutions of the nilpotent cone due to Borho and MacPherson. We also give alternative combinatorial proofs of our Schur expansion for several special cases, and give conjectural skewing formulas for the $t$ and $t^{2}$ coefficients of $\omega \Delta ^{\prime}_{e_{k}}e_{n}$. 
    more » « less
  5. We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are not determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the 4 × 4 problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size n ≥ 4, which appear new for n ≥ 5. By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation. 
    more » « less