Stay-at-home mandates following the COVID-19 pandemic increased work from home (WFH). While WFH offers many benefits, navigating work in nontraditional contexts can be a challenge. The objective of this study was to explore the benefits and challenges of WFH during COVID-19 to identify supports and resources necessary. Comments from two free-response questions on a survey regarding experiences of WFH ( N = 648, N = 366) were analyzed using inductive qualitative content analysis. Four themes emerged: time use, considerations of working in the home space, intersections between work-life and home-life, and temporality of WFH as situated within a pandemic. Across all themes were concerns related to participation in both work and home roles, work performance, and well-being. Findings highlight the importance of support during times of disruption of occupational patterns, roles, and routines. Despite challenges, many individuals hoped to continue WFH. Organizations should consider the complex intersections of work-life and home-life to develop supportive policies and resources.
more »
« less
Visualizing Internet Measurements of Covid-19 Work-from-Home
The Covid-19 pandemic disrupted the world as businesses and schools shifted to work-from-home (WFH), and comprehensive maps have helped visualize how those policies changed over time and in different places. We recently developed algorithms that infer the onset of WFH based on changes in observed Internet usage. Measurements of WFH are important to evaluate how effectively policies are implemented and followed, or to confirm policies in countries with less transparent journalism. This paper describes a web-based visualization system for measurements of Covid-19-induced WFH. We build on a web-based world map, showing a geographic grid of observations about WFH\@. We extend typical map interaction (zoom and pan, plus animation over time) with two new forms of pop-up information that allow users to drill-down to investigate our underlying data. We use sparklines to show changes over the first 6 months of 2020 for a given location, supporting identification and navigation to hot spots. Alternatively, users can report particular networks (Internet Service Providers) that show WFH on a given day. We show that these tools help us relate our observations to news reports of Covid-19-induced changes and, in some cases, lockdowns due to other causes. Our visualization is publicly available at \url{https://covid.ant.isi.edu}, as is our underlying data.
more »
« less
- Award ID(s):
- 2007106
- PAR ID:
- 10421758
- Date Published:
- Journal Name:
- 2021 IEEE International Conference on Big Data (Big Data)
- Page Range / eLocation ID:
- 5633 to 5638
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Analyzing the causal impact of different policies in reducing the spread of COVID-19 is of critical importance. The main challenge here is the existence of unobserved confounders (e.g., vigilance of residents) which influence both the presence of policies and the spread of COVID-19. Besides, as the confounders may be time-varying, it is even more difficult to capture them. Fortunately, the increasing prevalence of web data from various online applications provides an important resource of time-varying observational data, and enhances the opportunity to capture the confounders from them, e.g., the vigilance of residents over time can be reflected by the popularity of Google searches about COVID-19 at different time periods. In this paper, we study the problem of assessing the causal effects of different COVID-19 related policies on the outbreak dynamics in different counties at any given time period. To this end, we integrate COVID-19 related observational data covering different U.S. counties over time, and then develop a neural network based causal effect estimation framework which learns the representations of time-varying (unobserved) confounders from the observational data. Experimental results indicate the effectiveness of our proposed framework in quantifying the causal impact of policies at different granularities, ranging from a category of policies with a certain goal to a specific policy type. Compared with baseline methods, our assessment of policies is more consistent with existing epidemiological studies of COVID-19. Besides, our assessment also provides insights for future policy-making.more » « less
-
Abstract The COVID-19 pandemic has stimulated important changes in online information access as digital engagement became necessary to meet the demand for health, economic, and educational resources. Our analysis of 55 billion everyday web search interactions during the pandemic across 25,150 US ZIP codes reveals that the extent to which different communities of internet users enlist digital resources varies based on socioeconomic and environmental factors. For example, we find that ZIP codes with lower income intensified their access to health information to a smaller extent than ZIP codes with higher income. We show that ZIP codes with higher proportions of Black or Hispanic residents intensified their access to unemployment resources to a greater extent, while revealing patterns of unemployment site visits unseen by the claims data. Such differences frame important questions on the relationship between differential information search behaviors and the downstream real-world implications on more and less advantaged populations.more » « less
-
Abstract Since the mid-2000s, the Argo oceanographic observational network has provided near-real-time four-dimensional data for the global ocean for the first time in history. Internet (i.e., the “web”) applications that handle the more than two million Argo profiles of ocean temperature, salinity, and pressure are an active area of development. This paper introduces a new and efficient interactive Argo data visualization and delivery web application named Argovis that is built on a classic three-tier design consisting of a front end, back end, and database. Together these components allow users to navigate 4D data on a world map of Argo floats, with the option to select a custom region, depth range, and time period. Argovis’s back end sends data to users in a simple format, and the front end quickly renders web-quality figures. More advanced applications query Argovis from other programming environments, such as Python, R, and MATLAB. Our Argovis architecture allows expert data users to build their own functionality for specific applications, such as the creation of spatially gridded data for a given time and advanced time–frequency analysis for a space–time selection. Argovis is aimed to both scientists and the public, with tutorials and examples available on the website, describing how to use the Argovis data delivery system—for example, how to plot profiles in a region over time or to monitor profile metadata.more » « less
-
null (Ed.)Background Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. Objective The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. Methods We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. Results We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction: Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. Conclusions We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning.more » « less
An official website of the United States government

