skip to main content


Title: Integrated photonic slow light Michelson interferometer bio sensor
Diverse chip-based sensors utilizing integrated silicon photonics have been demonstrated in resonator and phase shifter/interferometer configurations. Till date, interferometric techniques with the Mach-Zehnder Interferometer (MZI) and Young’s interferometer have shown the lowest mass detection limits (in pg/mm2). Slow light in photonic crystal waveguides integrated with MZIs enables compact geometries due to enhanced optical path lengths as light propagates with high group index. In a typical MZI, light propagating in the signal arm overlaps with analytes and undergo a relative phase change with respect to the light in the reference arm which leads to measured output intensity changes. In this paper, using integrated photonic methods, we demonstrate a slow light enhanced Michelson interferometer (MI) biosensor, wherein the reference and signal arms are traversed twice by the propagating optical mode. As a result, the analyte interaction length is effectively doubled since the propagating optical mode undergoes twice the phase shift as would be observed in a MZI. In an asymmetric MI configuration, the resultant doubling of the phase shift is observed as a doubling of the resonance wavelength shift for a fixed change in the analyte concentration. The device sensitivity is thus doubled with respect to a conventional MZI while also effectively halving the geometric length compared to the MZI sensor  more » « less
Award ID(s):
2210707
NSF-PAR ID:
10421764
Author(s) / Creator(s):
; ;
Editor(s):
García-Blanco, Sonia M.; Cheben, Pavel
Date Published:
Journal Name:
Proceedings of SPIE
Volume:
124241B
Page Range / eLocation ID:
85
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Miller, Benjamin L. ; Weiss, Sharon M. ; Danielli, Amos (Ed.)
    Evanescent field silicon photonics in a silicon-on-insulator or silicon-nitride-on-insulator platforms have been effectively utilized to demonstrate chemical and biosensors over the past decade with applications in the detection of nucleic acids and protein biomarkers for cancers, viruses and infectious diseases, and environmental toxins. By balancing the requirements for efficient low-loss transmission through the waveguide and enhancing light-matter interaction such as with molecules binding on the high index material surfaces in resonant microcavities, slow light and interferometer geometries, various high sensitivity biosensors have been experimentally demonstrated down to few femtograms/ml. various slotted microcavities and waveguides have been experimentally demonstrated. In recent years, subwavelength waveguides have demonstrated high bulk spectral sensitivities approaching ~500nm/RIU (RIU=refractive index unit) in periodic structures with lattice constant (Λ) <<(λ/2n eff ) where n eff is the effective index at wavelength λ. While most experimental demonstrations have been in subwavelength ring resonator geometries, in this research, in addition to experimental demonstration of bulk spectral sensitivity ~775nm/RIU in subwavelength waveguides in interferometer configurations, we investigate optimized geometries that can reach sensitivities ~70,000nm/RIU in compact dimensions. In contrast to Mach-Zehnder interferometer (MZI) sensors of the same geometric interferometer arm lengths, the reflected path in Michelson interferometers (MI) doubles the optical path length, and thus effectively doubles the phase shift in the presence of an analyte. The interference fringe linewidths are narrowed compared to the equivalent MZI and would thus enable smaller changes in analyte concentration to be discerned from the fringe spectra. 
    more » « less
  2. Sanders, Glen A. ; Lieberman, Robert A. ; Udd Scheel, Ingrid (Ed.)
    Evanescent wave sensors in photonic integrated circuits have been demonstrated for gas sensing applications. While some methods rely on the distinctive response of certain polymers for sensing specific gases, absorption spectroscopy identifies any gas uniquely from their unique vibration signatures. Based on the Beer-Lambert principle, the sensitivity of absorption by a gas on chip relies on the length of the sensing region, the optical overlap integral with the analyte gas and the absorption cross-section at the wavelength with the fundamental vibration signature. The overlap of the optical mode with the analyte has been enhanced in photonic devices by combining slot waveguide confinements with photonic crystal slow light effects. While the absorption cross-section is a property of the gas, the length of the sensing region is limited by the available area on a chip and waveguide propagation losses that limit the minimum signal to noise ratio. In this paper, we show that by incorporating reflecting loop mirrors, the absorption path length can be doubled for the same geometric length of the absorption sensing waveguide. Light from a waveguide is split into two paths, each with a slow light photonic crystal waveguide, by a 2×2 multimode interference (MMI) power splitter. Each path is terminated by a loop mirror that causes the light to retrace its path back down the sensing arms thereby doubling the optical path length over which light interacts with the analyte. Results on the enhancement of phase sensitivity and absorbance sensitivity in the interferometric configuration are presented 
    more » « less
  3. We experimentally demonstrated slow-wave-enhanced phase and spectral sensitivity in asymmetric Michelson interferometer (MI) sensors. Compared to Mach–Zehnder interferometers (MZI) that experimentally demonstrated a phase sensitivity of 84,000 rad/RIU-cm, the reflected path enhancement of the optical path length coupled with slow light enhancement with photonic crystal waveguides in on-chip slow light Michelson interferometer sensors resulted in experimentally demonstrated phase sensitivity of 277,750 rad/RIU-cm with theoretical phase sensitivity as high as 461,810 rad/RIU-cm, at the same form factor as the MZI of identical interferometer arm lengths.

     
    more » « less
  4. Abstract

    Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to utilization such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index ofng = 73 and a strong localization of the modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when integrated with quantum cascade laser and detectors.

     
    more » « less
  5. Jelena Vuckovic (Ed.)
    On-chip broadband optical spectrometers that cover the entire tissue transparency window (λ = 650–1050 nm) with high resolution are highly demanded for miniaturized biosensing and bioimaging applications. The standard spatial heterodyne Fourier transform spectrometer (SHFTS) requires a large number of Mach–Zehnder interferometer (MZI) arrays to obtain a broad spectral bandwidth while maintaining high resolution. Here, we propose a novel type of SHFTS integrated with a subwavelength grating coupler (SWGC) for the dual-polarization bandpass sampling on the Si3N4 platform to solve the intrinsic trade-off limitation between the bandwidth and resolution of the SHFTS without having an outrageous number of MZI arrays or adding additional active photonic components. By applying the bandpass sampling theorem, the continuous broadband input spectrum is divided into multiple narrow-band channels through tuning the phase-matching condition of the SWGC with different polarization and coupling angles. Thereby, it is able to reconstruct each band separately far beyond the Nyquist criterion without aliasing error or degrading the resolution. We experimentally demonstrated the broadband spectrum retrieval results with the overall bandwidth coverage of 400 nm, bridging the wavelengths from 650 to 1050 nm, with a resolution of 2–5 nm. The bandpass sampling SHFTS is designed to have 32 linearly unbalanced MZIs with the maximum optical path length difference of 93 μm within an overall footprint size of 4.7 mm × 0.65 mm, and the coupling angles of SWGC are varied from 0° to 32° to cover the entire tissue transparency window. 
    more » « less