skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards lab-on-chip ultrasensitive ethanol detection using photonic crystal waveguide operating in the mid-infrared
Abstract Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to utilization such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index ofng = 73 and a strong localization of the modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when integrated with quantum cascade laser and detectors.  more » « less
Award ID(s):
1932753
PAR ID:
10472263
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Nanophotonics
Volume:
10
Issue:
6
ISSN:
2192-8606
Page Range / eLocation ID:
1675 to 1682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sanders, Glen A.; Lieberman, Robert A.; Udd Scheel, Ingrid (Ed.)
    Evanescent wave sensors in photonic integrated circuits have been demonstrated for gas sensing applications. While some methods rely on the distinctive response of certain polymers for sensing specific gases, absorption spectroscopy identifies any gas uniquely from their unique vibration signatures. Based on the Beer-Lambert principle, the sensitivity of absorption by a gas on chip relies on the length of the sensing region, the optical overlap integral with the analyte gas and the absorption cross-section at the wavelength with the fundamental vibration signature. The overlap of the optical mode with the analyte has been enhanced in photonic devices by combining slot waveguide confinements with photonic crystal slow light effects. While the absorption cross-section is a property of the gas, the length of the sensing region is limited by the available area on a chip and waveguide propagation losses that limit the minimum signal to noise ratio. In this paper, we show that by incorporating reflecting loop mirrors, the absorption path length can be doubled for the same geometric length of the absorption sensing waveguide. Light from a waveguide is split into two paths, each with a slow light photonic crystal waveguide, by a 2×2 multimode interference (MMI) power splitter. Each path is terminated by a loop mirror that causes the light to retrace its path back down the sensing arms thereby doubling the optical path length over which light interacts with the analyte. Results on the enhancement of phase sensitivity and absorbance sensitivity in the interferometric configuration are presented 
    more » « less
  2. Mid-infrared (mid-IR) absorption spectroscopy based on integrated photonic circuits has shown great promise in trace-gas sensing applications in which the mid-IR radiation directly interacts with the targeted analyte. In this paper, considering monolithic integrated circuits with quantum cascade lasers (QCLs) and quantum cascade detectors (QCDs), the InGaAs−InP platform is chosen to fabricate passive waveguide gas sensing devices. Fully suspended InGaAs waveguide devices with holey photonic crystal waveguides (HPCWs) and subwavelength grating cladding waveguides (SWWs) are designed and fabricated for mid-infrared sensing at λ = 6.15 μm in the low-index contrast InGaAs−InP platform. We experimentally detect 5 ppm ammonia with a 1 mm long suspended HPCW and separately with a 3 mm long suspended SWW, with propagation losses of 39.1 and 4.1 dB/cm, respectively. Furthermore, based on the Beer−Lambert infrared absorption law and the experimental results of discrete components, we estimated the minimum detectable gas concentration of 84 ppb from a QCL/QCD integrated SWW sensor. To the best of our knowledge, this is the first demonstration of suspended InGaAs membrane waveguides in the InGaAs−InP platform at such a long wavelength with gas sensing results. Also, this result emphasizes the advantage of SWWs to reduce the total transmission loss and the size of the fully integrated device’s footprint by virtue of its low propagation loss and TM mode compatibility in comparison to HPCWs. This study enables the possibility of monolithic integration of quantum cascade devices with TM polarized characteristics and passive waveguide sensing devices for on-chip mid-IR absorption spectroscopy. 
    more » « less
  3. Abstract Silicon photonic index sensors have received significant attention for label-free bio and gas-sensing applications, offering cost-effective and scalable solutions. Here, we introduce an ultra-compact silicon photonic refractive index sensor that leverages zero-crosstalk singularity responses enabled by subwavelength gratings. The subwavelength gratings are precisely engineered to achieve an anisotropic perturbation-led zero-crosstalk, resulting in a single transmission dip singularity in the spectrum that is independent of device length. The sensor is optimized for the transverse magnetic mode operation, where the subwavelength gratings are arranged perpendicular to the propagation direction to support a leaky-like mode and maximize the evanescent field interaction with the analyte space. Experimental results demonstrate a high wavelength sensitivity of − 410 nm/RIU and an intensity sensitivity of 395 dB/RIU, with a compact device footprint of approximately 82.8 μm2. Distinct from other resonant and interferometric sensors, our approach provides an FSR-free single-dip spectral response on a small device footprint, overcoming common challenges faced by traditional sensors, such as signal/phase ambiguity, sensitivity fading, limited detection range, and the necessity for large device footprints. This makes our sensor ideal for simplified intensity interrogation. The proposed sensor holds promise for a range of on-chip refractive index sensing applications, from gas to biochemical detection, representing a significant step towards efficient and miniaturized photonic sensing solutions. Graphical Abstract 
    more » « less
  4. García-Blanco, Sonia M.; Cheben, Pavel (Ed.)
    Diverse chip-based sensors utilizing integrated silicon photonics have been demonstrated in resonator and phase shifter/interferometer configurations. Till date, interferometric techniques with the Mach-Zehnder Interferometer (MZI) and Young’s interferometer have shown the lowest mass detection limits (in pg/mm2). Slow light in photonic crystal waveguides integrated with MZIs enables compact geometries due to enhanced optical path lengths as light propagates with high group index. In a typical MZI, light propagating in the signal arm overlaps with analytes and undergo a relative phase change with respect to the light in the reference arm which leads to measured output intensity changes. In this paper, using integrated photonic methods, we demonstrate a slow light enhanced Michelson interferometer (MI) biosensor, wherein the reference and signal arms are traversed twice by the propagating optical mode. As a result, the analyte interaction length is effectively doubled since the propagating optical mode undergoes twice the phase shift as would be observed in a MZI. In an asymmetric MI configuration, the resultant doubling of the phase shift is observed as a doubling of the resonance wavelength shift for a fixed change in the analyte concentration. The device sensitivity is thus doubled with respect to a conventional MZI while also effectively halving the geometric length compared to the MZI sensor 
    more » « less
  5. Abstract Nanophotonic resonators can confine light to deep-subwavelength volumes with highly enhanced near-field intensity and therefore are widely used for surface-enhanced infrared absorption spectroscopy in various molecular sensing applications. The enhanced signal is mainly contributed by molecules in photonic hot spots, which are regions of a nanophotonic structure with high-field intensity. Therefore, delivery of the majority of, if not all, analyte molecules to hot spots is crucial for fully utilizing the sensing capability of an optical sensor. However, for most optical sensors, simple and straightforward methods of introducing an aqueous analyte to the device, such as applying droplets or spin-coating, cannot achieve targeted delivery of analyte molecules to hot spots. Instead, analyte molecules are usually distributed across the entire device surface, so the majority of the molecules do not experience enhanced field intensity. Here, we present a nanophotonic sensor design with passive molecule trapping functionality. When an analyte solution droplet is introduced to the sensor surface and gradually evaporates, the device structure can effectively trap most precipitated analyte molecules in its hot spots, significantly enhancing the sensor spectral response and sensitivity performance. Specifically, our sensors produce a reflection change of a few percentage points in response to trace amounts of the amino-acid proline or glucose precipitate with a picogram-level mass, which is significantly less than the mass of a molecular monolayer covering the same measurement area. The demonstrated strategy for designing optical sensor structures may also be applied to sensing nano-particles such as exosomes, viruses, and quantum dots. 
    more » « less