skip to main content


This content will become publicly available on December 1, 2024

Title: Transient use of hemolymph for hydraulic wing expansion in cicadas
Abstract Insect wings must be flexible, light, and strong to allow dynamic behaviors such as flying, mating, and feeding. When winged insects eclose into adults, their wings unfold, actuated hydraulically by hemolymph. Flowing hemolymph in the wing is necessary for functioning and healthy wings, both as the wing forms and as an adult. Because this process recruits the circulatory system, we asked, how much hemolymph is pumped into wings, and what happens to the hemolymph afterwards? Using Brood X cicadas ( Magicicada septendecim ), we collected 200 cicada nymphs, observing wing transformation over 2 h. Using dissection, weighing, and imaging of wings at set time intervals, we found that within 40 min after emergence, wing pads morphed into adult wings and total wing mass increased to ~ 16% of body mass. Thus, a significant amount of hemolymph is diverted from body to wings to effectuate expansion. After full expansion, in the ~ 80 min after, the mass of the wings decreased precipitously. In fact, the final adult wing is lighter than the initial folded wing pad, a surprising result. These results demonstrate that cicadas not only pump hemolymph into the wings, they then pump it out, producing a strong yet lightweight wing.  more » « less
Award ID(s):
1812215
NSF-PAR ID:
10421968
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis

    Ecdysis, transformation from juvenile to adult form in insects, is time-consuming and leaves insects vulnerable to predation. For winged insects, the process of wing expansion during ecdysis, unfurling and expanding the wings, is a critical bottleneck in achieving sexual maturity. Internal and external forces play a role in wing expansion. Vigorous abdominal pumping during wing expansion allows insects to pressurize and inflate their wings, filling them with hemolymph. In addition, many insects adopt expansion-specific postures and, if inhibited, do not expand their wings normally, suggesting that external forces such as gravity may play a role. However, two previous studies over 40 years ago, reported that the forewings of swarming locusts can expand autonomously when removed from the emerging insect and laid flat on a saline solution. Termed “autoexpansion,” we replicated previous experiments of autoexpansion on flat liquid media, documenting changes in both wing length and area over time while also focusing on the role of gravity in autoexpansion. Using the North American bird grasshopper Schistocerca americana, we tested four autoexpansion treatments of varying surface tension and hydrophobicity (gravity, deionized water, buffer, and mineral oil) while simultaneously observing and measuring intact, normal wing expansion. Finally, we constructed a simple model of a viscoelastic expanding wing subjected to gravity, to determine whether it could capture aspects of wing expansion. Our data confirmed that wing autoexpansion does occur in S. americana, but autoexpanding wings, especially hindwings, failed to increase to the same final length and area as intact wings. We found that gravity plays an important role in wing expansion, early in the expansion process. Combined with the significant mass increase we documented in intact wings, it suggests that hydraulic pumping of hemolymph into the wings plays an important role in increasing the area of expanding wings, especially in driving expansion of the large, pleated hindwings. Autoexpansion in a non-swarming orthopteran suggests that local cues driving wing autoexpansion may serve a broader purpose, reducing total expansion time and costs by shifting some processes from central to local control. Documenting wing autoexpansion in a widely studied model organism and demonstrating a mathematical model provides a tractable new system for exploring higher level questions about the mechanisms of wing expansion and the implications of autoexpansion, as well as potential bioinspiration for future technologies applicable to micro-air vehicles, space exploration, or medical and prosthetic devices.

     
    more » « less
  2. Abstract

    An insect’s living systems—circulation, respiration, and a branching nervous system—extend from the body into the wing. Wing hemolymph circulation is critical for hydrating tissues and supplying nutrients to living systems such as sensory organs across the wing. Despite the critical role of hemolymph circulation in maintaining healthy wing function, wings are often considered “lifeless” cuticle, and flows remain largely unquantified. High-speed fluorescent microscopy and particle tracking of hemolymph in the wings and body of the grasshopperSchistocerca americanarevealed dynamic flow in every vein of the fore- and hindwings. The global system forms a circuit, but local flow behavior is complex, exhibiting three distinct types: pulsatile, aperiodic, and “leaky” flow. Thoracic wing hearts pull hemolymph from the wing at slower frequencies than the dorsal vessel; however, the velocity of returning hemolymph (in the hindwing) is faster than in that of the dorsal vessel. To characterize the wing’s internal flow mechanics, we mapped dimensionless flow parameters across the wings, revealing viscous flow regimes. Wings sustain ecologically important insect behaviors such as pollination and migration. Analysis of the wing circulatory system provides a template for future studies investigating the critical hemodynamics necessary to sustaining wing health and insect flight.

     
    more » « less
  3. Burghardt, G.M. (Ed.)

    Several species of stalk-eyed flies exhibit exaggerated sexual dimorphism where females favor males with longer eyespans. Longer eyespan increases a fly’s moment of inertia, and may, therefore, impact flight behavior and fitness, specifically maneuverability and predator evasion. However, these putative costs may be ameliorated by co-selection for compensatory traits, as flies with longer eyespans tend to have larger thoraces and wings, which allows them to perform turns similar to flies with shorter eyespans. Furthermore, the capacity to compensate for a potentially costly ornament may not be fixed across the life-history of the adult stage, as stalk-eyed flies achieve sexual maturity at 3-4 weeks of age, accompanied by significant growth of reproductive tissues and organs. Thus, growth of the abdomen and body mass over time may impose constraints on flight performance that may affect whether an adult reaches the age of reproductive viability. The purpose of this study was to investigate the flight performance of stalk-eyed flies and its relationship to body morphology and development. The flight performance of 1-to-30 day oldTeleopsis dalmanni(n=124) andDiasemopsis meigenii(n=83) were assessed by presenting normoxic, variable-density mixtures of heliox (O2, N2and He) in 10% increments ranging from air to pure heliox; the least-dense gas allowing flight represented maximal performance. Flight kinematics were analyzed using high-speed (5930fps) videography. Immediately following flight assessment, flies were euthanized, photographed, dissected and weighed. In both species, total body mass, thorax and abdominal mass increased across age. Wing kinematics and maximal flight capacity were associated with thorax mass, and increased with age as flies became heavier. Although flies with longer eyespans were indeed heavier, they had larger wings and thoraces; however, maximal flight capacity and kinematics were generally independent of eyespan. Thus, bearing long eye-stalks did not impair flight performance, nor did the increase in mass attributable to reproductive maturation. Instead, variation in flight performance appears associated with the development of the flight motor, and improved ratio of thorax-to-total mass, across age.

     
    more » « less
  4. Insect wings are living, flexible structures composed of tubular veins and thin wing membrane. Wing veins can contain hemolymph (insect blood), tracheae, and nerves. Continuous flow of hemolymph within insect wings ensures that sensory hairs, structural elements such as resilin, and other living tissue within the wings remains functional. While it is well known that hemolymph circulates through insect wings, the extent of wing circulation (e.g., whether flow is present in every vein, and whether it is confined to the veins alone) is not well understood, especially for wings with complex wing venation. Over the last 100 years, scientists have developed experimental methods including microscopy, fluorescence, and thermography to observe flow in the wings. Recognizing and evaluating the importance of hemolymph movement in insect wings is critical in evaluating how the wings function both as flight appendages, as active sensors, and as thermoregulatory organs. In this review, we discuss the history of circulation in wings, past and present experimental techniques for measuring hemolymph, and broad implications for the field of hemodynamics in insect wings. 
    more » « less
  5. Body plan evolution often occurs through the differentiation of serially homologous body parts, particularly in the evolution of arthropod body plans. Recently, homeotic transformations resulting from experimental manipulation of gene expression, along with comparative data on the expression and function of genes in the wing regulatory network, have provided a new perspective on an old question in insect evolution: how did the insect wing evolve? We investigated the metamorphic roles of a suite of 10 wing- and body-wall-related genes in a hemimetabolous insect, Oncopeltus fasciatus . Our results indicate that genes involved in wing development in O. fasciatus play similar roles in the development of adult body-wall flattened cuticular evaginations. We found extensive functional similarity between the development of wings and other bilayered evaginations of the body wall. Overall, our results support the existence of a versatile development module for building bilayered cuticular epithelial structures that pre-dates the evolutionary origin of wings. We explore the consequences of reconceptualizing the canonical wing-patterning network as a bilayered body-wall patterning network, including consequences for long-standing debates about wing homology, the origin of wings and the origin of novel bilayered body-wall structures. We conclude by presenting three testable predictions that result from this reconceptualization. 
    more » « less