Abstract We present spatially resolved measurements of SO2and NaCl winds on Io at several unique points in its orbit: before and after eclipse and at maximum eastern and western elongation. The derived wind fields represent a unique case of meteorology in a rarified, volcanic atmosphere. Through the use of Doppler shift measurements in emission spectra obtained with the Atacama Large Millimeter/submillimeter Array between ~346 and 430 GHz (~0.70–0.87 mm), line-of-sight winds up to ~−100 m s−1in the approaching direction and >250 m s−1in the receding direction were derived for SO2at altitudes of ~10–50 km, while NaCl winds consistently reached ~∣150–200∣ m s−1in localized regions up to ~30 km above the surface. The wind distributions measured at maximum east and west Jovian elongations and on the sub-Jovian hemisphere pre- and posteclipse were found to be significantly different and complex, corroborating the results of simulations that include surface temperature and frost distribution, volcanic activity, and interactions with the Jovian magnetosphere. Further, the wind speeds of SO2and NaCl are often inconsistent in direction and magnitude, indicating that the processes that drive the winds for the two molecular species are different and potentially uncoupled; while the SO2wind field can be explained through a combination of sublimation-driven winds, plasma torus interactions, and plume activity, the NaCl winds appear to be primarily driven by the plasma torus.
more »
« less
Io’s Optical Aurorae in Jupiter’s Shadow
Abstract Decline and recovery timescales surrounding eclipse are indicative of the controlling physical processes in Io’s atmosphere. Recent studies have established that the majority of Io’s molecular atmosphere, SO 2 and SO, condenses during its passage through Jupiter’s shadow. The eclipse response of Io’s atomic atmosphere is less certain, having been characterized solely by ultraviolet aurorae. Here we explore the response of optical aurorae for the first time. We find oxygen to be indifferent to the changing illumination, with [O i ] brightness merely tracking the plasma density at Io’s position in the torus. In shadow, line ratios confirm sparse SO 2 coverage relative to O, since their collisions would otherwise quench the emission. Io’s sodium aurora mostly disappears in eclipse and e-folding timescales, for decline and recovery differ sharply: ∼10 minutes at ingress and nearly 2 hr at egress. Only ion chemistry can produce such a disparity; Io’s molecular ionosphere is weaker at egress due to rapid recombination. Interruption of a NaCl + photochemical pathway best explains Na behavior surrounding eclipse, implying that the role of electron impact ionization is minor relative to photons. Auroral emission is also evident from potassium, confirming K as the major source of far red emissions seen with spacecraft imaging at Jupiter. In all cases, direct electron impact on atomic gas is sufficient to explain the brightness without invoking significant dissociative excitation of molecules. Surprisingly, the nonresponse of O and rapid depletion of Na is opposite the temporal behavior of their SO 2 and NaCl parent molecules during Io’s eclipse phase.
more »
« less
- Award ID(s):
- 2108416
- PAR ID:
- 10422046
- Date Published:
- Journal Name:
- The Planetary Science Journal
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2632-3338
- Page Range / eLocation ID:
- 36
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recently, the first JWST measurement of thermal emission from a rocky exoplanet was reported. The inferred dayside brightness temperature of TRAPPIST-1 b at 15 μ m is consistent with the planet having no atmosphere and therefore no mechanism by which to circulate heat to its nightside. In this Letter, we compare TRAPPIST-1 b's measured secondary eclipse depth to predictions from a suite of self-consistent radiative-convective equilibrium models in order to quantify the maximum atmospheric thickness consistent with the observation. We find that plausible atmospheres (i.e., those that contain at least 100 ppm CO 2 ) with surface pressures greater than 0.3 bar are ruled out at 3 σ , regardless of the choice of background atmosphere, and a Mars-like thin atmosphere with surface pressure 6.5 mbar composed entirely of CO 2 is also ruled out at 3 σ . Thicker atmospheres of up to 10 bar (100 bar) are consistent with the data at 1 σ (3 σ ) only if the atmosphere lacks any strong absorbers across the mid-IR wavelength range—a scenario that we deem unlikely. We additionally model the emission spectra for bare-rock planets of various compositions. We find that a basaltic, metal-rich, and Fe-oxidized surface best matches the measured eclipse depth to within 1 σ , and the best-fit gray albedo is 0.02 ± 0.11. We conclude that planned secondary eclipse observations at 12.8 μ m will serve to validate TRAPPIST-1 b's high observed brightness temperature, but are unlikely to further distinguish among the consistent atmospheric and bare-rock scenarios.more » « less
-
null (Ed.)Functional small molecules afford opportunities to direct solid-state inorganic reactions at low temperatures. Here, we use catalytic amounts of organosilicon molecules to influence the metathesis reaction: FeCl 2 + Na 2 S 2 → 2NaCl + FeS 2 . Specifically, hexaphenyldisiloxane ((C 6 H 5 ) 6 Si 2 O) is shown to increase pyrite yields in metathesis reactions performed at 150 °C. In situ synchrotron X-ray diffraction (SXRD) paired with differential scanning calorimetry (DSC) reveals that diffusion-limited intermediates are circumvented in the presence of (C 6 H 5 ) 6 Si 2 O. Control reactions suggest that the observed change in the reaction pathway is imparted by the Si–O functional group. 1 H NMR supports catalytic behavior, as (C 6 H 5 ) 6 Si 2 O is unchanged ex post facto . Taken together, we hypothesize that the polar Si–O functional group coordinates to iron chloride species when NaCl and Na 2 S 4 form, forming an unidentified, transient intermediate. Further exploration of targeted small molecules in these metathesis reaction provides new strategies in controlling inorganic materials synthesis at low-temperatures.more » « less
-
Abstract A sensitive (1 σ rms ≤ 3 mK; 2 MHz resolution) 1 mm spectral survey (214.5–285.5 GHz) of the envelope of the oxygen-rich supergiant star NML Cygni (NML Cyg) has been conducted using the 10 m Submillimeter Telescope of the Arizona Radio Observatory. These data represent the first spectral line survey of NML Cyg and are complementary to a previous 1 mm survey of the envelope of a similar hypergiant, VY Canis Majoris (VY CMa). The complete NML Cyg data set is presented here. In the survey, 104 emission lines were observed, arising from 17 different molecules and 4 unidentified features. Many of the observed features have complex line profiles, arising from asymmetric outflows characteristic of hypergiant stars. While most of the lines in the survey arise from SiO, SO, SO 2 , and SiS, CO had the strongest emission. Five other C-bearing species are identified in the survey (HCN, CN, HCO + , CS, and HNC), demonstrating an active carbon chemistry despite the O-rich environment. Moreover, NS was observed, but not NO, although favorable transitions of both molecules lie in the surveyed region. Sulfur chemistry appears to be prominent in NML Cyg and plays an important role in the collimated outflows. The refractory species observed, NaCl and AlO, have narrow emission lines, indicating that these molecules do not reach the terminal expansion velocity. NaCl and AlO likely condense into dust grains at r < 50 R * . From NaCl, the chlorine isotope ratio was determined to be 35 Cl/ 37 Cl = 3.85 ± 0.30.more » « less
-
Abstract. Lidar observations of the mesospheric Na layer have revealed considerablediurnal variations, particularly on the bottom side of the layer, where morethan an order-of-magnitude increase in Na density has been observed below 80 kmafter sunrise. In this paper, multi-year Na lidar observations areutilized over a full diurnal cycle at Utah State University (USU) (41.8∘ N,111.8∘ W) and a global atmospheric model of Na with 0.5 kmvertical resolution in the mesosphere and lower thermosphere (WACCM-Na) to explorethe dramatic changes of Na density on the bottom side of the layer. Photolysis of the principal reservoir NaHCO3 is shown to beprimarily responsible for the increase in Na after sunrise, amplified by theincreased rate of reaction of NaHCO3 with atomic H, which is mainlyproduced from the photolysis of H2O and the reaction of OH withO3. This finding is further supported by Na lidar observation at USUduring the solar eclipse (>96 % totality) event on 21 August 2017, when a decrease and recovery of the Na density on thebottom side of the layer were observed. Lastly, the model simulation showsthat the Fe density below around 80 km increases more strongly and earlierthan observed Na changes during sunrise because of the considerably fasterphotolysis rate of its major reservoir of FeOH.more » « less
An official website of the United States government

