Abstract Vertical energy transports due to dissipating gravity waves in the mesopause region (85–100 km) are analyzed using over 400 h of observational data obtained from a narrow‐band sodium wind‐temperature lidar located at Andes Lidar Observatory (ALO), Cerro Pachón (30.25°S, 70.73°W), Chile. Sensible heat flux is directly estimated using measured temperature and vertical wind; energy flux is estimated from the vertical wavenumber and frequency spectra of temperature perturbations; and enthalpy flux is derived based on its relationship with sensible heat and energy fluxes. Sensible heat flux is mostly downward throughout the region. Enthalpy flux exhibits an annual oscillation with maximum downward transport in July above 90 km. The dominant feature of energy flux is the exponential decrease from 10−2to 10−4 W m−2with the altitude increases from 85 to 100 km and is larger during austral winter. The annual mean thermal diffusivity inferred from enthalpy flux decreases from 303 m2s−1at 85 km to minimum 221 m2s−1at 90 km then increases to 350 m2s−1at 99 km. Results also show that shorter period gravity waves tend to dissipate at higher altitudes and generate more heat transport. The averaged vertical group velocities for high, medium, and low frequency waves are 4.15 m s−1, 1.15 m s−1, and 0.70 m s−1, respectively. Gravity wave heat transport brings significant cooling in the mesopause region at an average cooling rate of 6.7 ± 1.1 K per day.
more »
« less
Io’s SO 2 and NaCl Wind Fields from ALMA
Abstract We present spatially resolved measurements of SO2and NaCl winds on Io at several unique points in its orbit: before and after eclipse and at maximum eastern and western elongation. The derived wind fields represent a unique case of meteorology in a rarified, volcanic atmosphere. Through the use of Doppler shift measurements in emission spectra obtained with the Atacama Large Millimeter/submillimeter Array between ~346 and 430 GHz (~0.70–0.87 mm), line-of-sight winds up to ~−100 m s−1in the approaching direction and >250 m s−1in the receding direction were derived for SO2at altitudes of ~10–50 km, while NaCl winds consistently reached ~∣150–200∣ m s−1in localized regions up to ~30 km above the surface. The wind distributions measured at maximum east and west Jovian elongations and on the sub-Jovian hemisphere pre- and posteclipse were found to be significantly different and complex, corroborating the results of simulations that include surface temperature and frost distribution, volcanic activity, and interactions with the Jovian magnetosphere. Further, the wind speeds of SO2and NaCl are often inconsistent in direction and magnitude, indicating that the processes that drive the winds for the two molecular species are different and potentially uncoupled; while the SO2wind field can be explained through a combination of sublimation-driven winds, plasma torus interactions, and plume activity, the NaCl winds appear to be primarily driven by the plasma torus.
more »
« less
- Award ID(s):
- 2238344
- PAR ID:
- 10629512
- Publisher / Repository:
- The Astrophysical Journal Letters
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 978
- Issue:
- 1
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L1
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present a novel method of constraining volcanic activity on extrasolar terrestrial worlds via characterization of circumstellar plasma tori. Our work generalizes the physics of the Io plasma torus to propose a hypothetical circumstellar plasma torus generated by exoplanetary volcanism. The quasi-steady torus mass is determined by a balance between material injection and ejection rates from volcanic activity and corotating magnetospheric convection, respectively. By estimating the Alfvén surfaces of planet-hosting stars, we calculate the torus mass-removal timescale for a number of exoplanets with properties amenable to plasma torus construction. Assuming a uniform toroidal geometry comparable to Io’s “warm” torus, we calculate quasi-steady torus masses inferable from the optical depth of atomic spectral features in torus-contaminated stellar spectra. The calculated quasi-steady masses can be used to constrain the volcanic outgassing rates of each species detected in the torus, providing quantitative estimates of bulk volcanic activity and interior composition with minimal assumptions. Such insight into the interior state of an exoplanet is otherwise accessible only after destruction via tidal forces. We demonstrate the feasibility of our method by showcasing known exoplanets that are susceptible to tidal heating and could generate readily detectable tori with realistic outgassing rates of order 1 t s−1, comparable to the Io plasma torus mass injection rate. This methodology may be applied to stellar spectra measured with ultraviolet instruments with sufficient resolution to detect atomic lines and sensitivity to recover the ultraviolet continuum of GKM dwarf stars. This further motivates the need for ultraviolet instrumentation above Earth’s atmosphere.more » « less
-
Abstract We present a comprehensive analysis of the photometric and spectroscopic evolution of SN 2021foa, unique among the class of transitional supernovae for repeatedly changing its spectroscopic appearance from hydrogen-to-helium-to-hydrogen dominated (IIn-to-Ibn-to-IIn) within 50 days past peak brightness. The spectra exhibit multiple narrow (≈300–600 km s−1) absorption lines of hydrogen, helium, calcium, and iron together with broad helium emission lines with a full width at half-maximum (FWHM) of ∼6000 km s−1. For a steady, wind mass-loss regime, light-curve modeling results in an ejecta mass of ∼8M⊙and circumstellar material (CSM) mass below 1M⊙, and an ejecta velocity consistent with the FWHM of the broad helium lines. We obtain a mass-loss rate of ≈2M⊙yr−1. This mass-loss rate is 3 orders of magnitude larger than derived for normal Type II supernovae. We estimate that the bulk of the CSM of SN 2021foa must have been expelled within half a year, about 12 yr ago. Our analysis suggests that SN 2021foa had a helium-rich ejecta that swept up a dense shell of hydrogen-rich CSM shortly after explosion. At about 60 days past peak brightness, the photosphere recedes through the dense ejecta-CSM region, occulting much of the redshifted emission of the hydrogen and helium lines, which results in an observed blueshift (∼−3000 km s−1). Strong mass-loss activity prior to explosion, such as those seen in SN 2009ip-like objects and SN 2021foa as precursor emission, are the likely origin of a complex, multiple-shell CSM close to the progenitor star.more » « less
-
Abstract We present first results derived from the largest collection of contemporaneously recorded Jovian sodium nebula and Io plasma torus in [S II] 6731 Å images assembled to date. The data were recorded by the Planetary Science Institute's Io Input/Output observatory and provide important context to Io geologic and atmospheric studies as well as theJunomission and supporting observations. Enhancements in the observed emission are common, typically lasting 1–3 months, such that the average flux of material from Io is determined by the enhancements, not any quiescent state. The enhancements are not seen at periodicities associated with modulation in solar insolation of Io's surface, thus physical process(es) other than insolation‐driven sublimation must ultimately drive the bulk of Io's atmospheric escape. We suggest that geologic activity, likely involving volcanic plumes, drives escape.more » « less
-
Abstract Pore size distribution and surface chemistry of bio‐derived (milk) microporous dominated carbon “MDC” is synergistically tuned, allowing for promising carbon capture in a dry CO2atmosphere and in mixed H2O–CO2. The capture capacity is attributed to the synergy of a large total surface area with an ultramicroporous and microporous texture (e.g.,Stot1889 m2g−1,Smic1755 m2g−1,Sultra1393 m2g−1), and a high content of nitrogen and oxygen heteroatom moieties (e.g., 5 at% N, 10.5 at% O). Tailored two‐step low‐temperature pyrolysis‐chemical activation is employed to take advantage of the intrinsic properties of the precursor, allowing for this unusual textural properties‐heteroatoms combination. For example, tested at 1 bar and 295 or 273 K, MDCs adsorb up to 22.0 and 29.4 wt% CO2, respectively. MDCs are also tailored to be hydrophobic, with CO2/H2O adsorption selectivity even after prolonged cycling. Maximum working capacities of 10.8 wt% for pure CO2and 3.5 wt% for a flue gas simulant (15% CO2, 85% N2) are measured using temperature swing adsorption with dynamic purge gases, while being minimally affected by humid conditions. This work is directly aligned with the United Nation’s Sustainable Development Goal 13, take urgent action to combat climate change and its impacts.more » « less
An official website of the United States government

