Abstract The detection of a sub-solar mass black hole could yield dramatic new insights into the nature of dark matter and early-Universe physics, as such objects lack a traditional astrophysical formation mechanism. Gravitational waves allow for the direct measurement of compact object masses during binary mergers, and we expect the gravitational-wave signal from a low-mass coalescence to remain within the LIGO frequency band for thousands of seconds. However, it is unclear whether one can confidently measure the properties of a sub-solar mass compact object and distinguish between a sub-solar mass black hole or other exotic objects. To this end, we perform Bayesian parameter estimation on simulated gravitational-wave signals from sub-solar mass black hole mergers to explore the measurability of their source properties. We find that the LIGO/Virgo detectors during the O4 observing run would be able to confidently identify sub-solar component masses at the threshold of detectability; these events would also be well-localized on the sky and may reveal some information on their binary spin geometry. Further, next-generation detectors such as Cosmic Explorer and the Einstein Telescope will allow for precision measurement of the properties of sub-solar mass mergers and tighter constraints on their compact-object nature.
more »
« less
Binary collisions of dark matter blobs
A bstract We describe the model-independent mechanism by which dark matter and dark matter structures heavier than ~ 8 × 10 11 GeV form binary pairs in the early Universe that spin down and merge both in the present and throughout the Universe’s history, producing potentially observable signals. Sufficiently dense dark objects will dominantly collide through binary mergers instead of random collisions. We detail how one would estimate the merger rate accounting for finite size effects, multibody interactions, and friction with the thermal bath. We predict how mergers of dark dense objects could be detected through gravitational and electromagnetic signals, noting that such mergers could be a unique source of high frequency gravitational waves. We rule out objects whose presence would contradict observations of the CMB and diffuse gamma-rays.
more »
« less
- Award ID(s):
- 2112699
- PAR ID:
- 10422215
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Orbital eccentricity is one of the most robust discriminators for distinguishing between dynamical and isolated formation scenarios of binary black hole mergers using gravitational-wave observatories such as LIGO and Virgo. Using state-of-the-art cluster models, we show how selection effects impact the detectable distribution of eccentric mergers from clusters. We show that the observation (or lack thereof) of eccentric binary black hole mergers can significantly constrain the fraction of detectable systems that originate from dynamical environments, such as dense star clusters. After roughly 150 observations, observing no eccentric binary signals would indicate that clusters cannot make up the majority of the merging binary black hole population in the local universe (95% credibility). However, if dense star clusters dominate the rate of eccentric mergers and a single system is confirmed to be measurably eccentric in the first and second gravitational-wave transient catalogs, clusters must account for at least 14% of detectable binary black hole mergers. The constraints on the fraction of detectable systems from dense star clusters become significantly tighter as the number of eccentric observations grows and will be constrained to within 0.5 dex once 10 eccentric binary black holes are observed.more » « less
-
Abstract Supersonically induced gas objects (SIGOs), are structures with little to no dark-matter component predicted to exist in regions of the universe with large relative velocities between baryons and dark matter at the time of recombination. They have been suggested to be the progenitors of present-day globular clusters. Using simulations, SIGOs have been studied on small scales (around 2 Mpc) where these relative velocities are coherent. However, it is challenging to study SIGOs using simulations on large scales due to the varying relative velocities at scales larger than a few Mpc. Here, we study SIGO abundances semi-analytically: using perturbation theory, we predict the number density of SIGOs analytically, and compare these results to small-box numerical simulations. We use the agreement between the numerical and analytic calculations to extrapolate the large-scale variation of SIGO abundances over different stream velocities. As a result, we predict similar large-scale variations of objects with high gas densities before reionization that could possibly be observed by JWST. If indeed SIGOs are progenitors of globular clusters, then we expect a similar variation of globular cluster abundances over large scales. Significantly, we find that the expected number density of SIGOs is consistent with observed globular cluster number densities. As a proof-of-concept, and because globular clusters were proposed to be natural formation sites for gravitational wave sources from binary black-hole mergers, we show that SIGOs should imprint an anisotropy on the gravitational wave signal on the sky, consistent with their distribution.more » « less
-
Abstract The population of binary black hole mergers identified through gravitational waves has uncovered unexpected features in the intrinsic properties of black holes in the universe. One particularly surprising and exciting result is the possible existence of black holes in the pair-instability mass gap, ∼50–120 M ⊙ . Dense stellar environments can populate this region of mass space through hierarchical mergers, with the retention efficiency of black hole merger products strongly dependent on the escape velocity of the host environment. We use simple toy models to represent hierarchical merger scenarios in various dynamical environments. We find that hierarchical mergers in environments with high escape velocities (≳300 km s −1 ) are efficiently retained. If such environments dominate the binary black hole merger rate, this would lead to an abundance of high-mass mergers that is potentially incompatible with the empirical mass spectrum from the current catalog of binary black hole mergers. Models that efficiently generate hierarchical mergers, and contribute significantly to the observed population, must therefore be tuned to avoid a “cluster catastrophe” of overproducing binary black hole mergers within and above the pair-instability mass gap.more » « less
-
Abstract Intermediate-mass black holes (IMBHs) are believed to be the missing link between the supermassive black holes (BHs) found at the centers of massive galaxies and BHs formed through stellar core collapse. One of the proposed mechanisms for their formation is a collisional runaway process in high-density young star clusters, where an unusually massive object forms through repeated stellar collisions and mergers, eventually collapsing to form an IMBH. This seed IMBH could then grow further through binary mergers with other stellar-mass BHs. Here we investigate the gravitational-wave (GW) signals produced during these later IMBH–BH mergers. We use a state-of-the-art semi-analytic approach to study the stellar dynamics and to characterize the rates and properties of IMBH–BH mergers. We also study the prospects for detection of these mergers by current and future GW observatories, both space-based (LISA) and ground-based (LIGO Voyager, Einstein Telescope, and Cosmic Explorer). We find that most of the merger signals could be detected, with some of them being multiband sources. Therefore, GWs represent a unique tool to test the collisional runaway scenario and to constrain the population of dynamically assembled IMBHs.more » « less
An official website of the United States government

