skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lava fountain jet noise during the 2018 eruption of fissure 8 of Kīlauea volcano
Real-time monitoring is crucial to assess hazards and mitigate risks of sustained volcanic eruptions that last hours to months or more. Sustained eruptions have been shown to produce a low frequency (infrasonic) form of jet noise. We analyze the lava fountaining at fissure 8 during the 2018 Lower East Rift Zone eruption of Kīlauea volcano, Hawaii, and connect changes in fountain properties with recorded infrasound signals from an array about 500 m from the fountain using jet noise scaling laws and visual imagery. Video footage from the eruption reveals a change in lava fountain dynamics from a tall, distinct fountain at the beginning of June to a low fountain with a turbulent, out-pouring lava pond surrounded by a tephra cone by mid-June. During mid-June, the sound pressure level reaches a maximum, and peak frequency drops. We develop a model that uses jet noise scaling relationships to estimate changes in volcanic jet diameter and jet velocity from infrasound sound pressure levels and peak frequencies. The results of this model indicate a decrease in velocity in mid-June which coincides with the decrease in fountain height. Furthermore, the model results suggest an increase in jet diameter, which can be explained by the larger width of the fountain that resembles a turbulent lava pond compared to the distinct fountain at the beginning of June. The agreement between the infrasound-derived and visually observed changes in fountain dynamics suggests that jet noise scaling relationships can be used to monitor lava fountain dynamics using infrasound recordings.  more » « less
Award ID(s):
1847736 1901614
PAR ID:
10422348
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
10
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Infrasound (low‐frequency acoustic waves) has proven useful to detect and characterize subaerial volcanic activity, but understanding the infrasonic source during sustained eruptions is still an area of active research. Preliminary comparison between acoustic eruption spectra and the jet noise similarity spectra suggests that volcanoes can produce an infrasonic form of jet noise from turbulence. The jet noise similarity spectra, empirically derived from audible laboratory jets, consist of two noise sources: large‐scale turbulence (LST) and fine‐scale turbulence (FST). We fit the similarity spectra quantitatively to eruptions of Mount St. Helens in 2005, Tungurahua in 2006, and Kīlauea in 2018 using nonlinear least squares fitting. By fitting over a wide infrasonic frequency band (0.05–10 Hz) and restricting the peak frequency above 0.15 Hz, we observe a better fit during times of eruption versus non‐eruptive background noise. Fitting smaller overlapping frequency bands highlights changes in the fit of LST and FST spectra, which aligns with observed changes in eruption dynamics. Our results indicate that future quantitative spectral fitting of eruption data will help identify changes in eruption source parameters such as velocity, jet diameter, and ash content which are critical for effective hazard monitoring and response. 
    more » « less
  2. null (Ed.)
    Infrasound observations are commonly used to constrain properties of subaerial volcanic eruptions. In order to better interpret infrasound observations, however, there is a need to better understand the relationship between eruption properties and sound generation. Here we perform two-dimensional computational aeroacoustic simulations where we solve the compressible Navier-Stokes equations with a large-eddy simulation approximation. We simulate idealized impulsive volcanic eruptions where the exit velocity is specified and the eruption is pressure-balanced with the atmosphere. Our nonlinear simulation results are compared with the commonly used analytical linear acoustics model of a compact monopole source radiating acoustic waves isotropically in a half space. The monopole source model matches the simulations for low exit velocities (M < 0.3 where M is the Mach number); however, the two solutions diverge as the exit velocity increases with the simulations developing lower peak amplitude and more rapid onset. For high exit velocities (M>0.8) the radiation pattern becomes anisotropic, with stronger infrasound signals recorded above the vent than on Earth's surface (50% greater peak amplitude for an eruption with M=0.95) and interpreting ground-based infrasound observations with the monopole source model can result in an underestimation of the erupted volume. We examine nonlinear effects and show that nonlinear effects during propagation are relatively minor. Instead, the dominant nonlinear effect is sound generation by the complex flow structure that develops above the vent. This work demonstrates the need to consider anisotropic radiation patterns and near-vent fluid flow when interpreting infrasound observations, particularly for eruptions with sonic or supersonic exit velocities. 
    more » « less
  3. Abstract Infrasound (low frequency sound waves) can be used to monitor and characterize volcanic eruptions. However, infrasound sensors are usually placed on the ground, thus providing a limited sampling of the acoustic radiation pattern that can bias source size estimates. We present observations of explosive eruptions from a novel uncrewed aircraft system (UAS)‐based infrasound sensor platform that was strategically hovered near the active vents of Stromboli volcano, Italy. We captured eruption infrasound from short‐duration explosions and jetting events. While potential vertical directionality was inconclusive for the short‐duration explosion, we find that jetting events exhibit vertical sound directionality that was observed with a UAS close to vertical. This directionality would not have been observed using only traditional deployments of ground‐based infrasound sensors, but is consistent with jet noise theory. This proof‐of‐concept study provides unique information that can improve our ability to characterize and quantify the directionality of volcanic eruptions and their associated hazards. 
    more » « less
  4. Lava flows have presented the greatest hazard to human property during the most recent eruptions of Hawaiian volcanoes, and lava fountains are a source of these lava flows. The height of Hawaiian lava fountains reflects the exsolved gas content of the magma that controls eruption intensity. However, fountain height is not always observed, so we sought a proxy to estimate fountain heights of eruptions that were older or otherwise unobserved. Here, methods are described to empirically derive a relationship between the modal diameter of vesicles within Pele’s tears and spheres and lava fountain height, using samples of Pele’s tears produced during the last eruptions of Kīlauea Iki (1959) and Mauna Ulu (1969). The tears used to develop these relationships were approximately 1 to 4 mm in diameter. Additionally, since lava fountains 50–580 m high were used, the relationships we describe may only describe lava fountains in this height range. The strongest empirical relation follows the trendline Hmax= −2575d + 820, where Hmaxis maximum lava fountain height and d is modal vesicle diameter. This empirical relationship may be applied to sub-Strombolian eruptions of tholeiite basalt that were not directly measured or observed to assess long-term shifts in lava fountain heights and thus the exsolved gas contents of a volcanic system. While the same conceptual framework can be applied beyond Hawai’i, the quantitative empirical relation may be slightly different in different systems, depending on total dissolved volatiles, magma chemistry and other factors. 
    more » « less
  5. The 2021 eruption at Tajogaite (Cumbre Vieja) volcano (La Palma, Spain) was characterized by Strombolian eruptions, Hawaiian fountaining, white gas-dominated and grey ash-rich plumes, and lava effusion from multiple vents. The variety of eruptive styles displayed simultaneously and throughout the eruption presents an opportunity to explore controls on explosivity and the relationship between explosive and effusive activity. Explosive eruption dynamics were recorded using ground-based thermal photography and videography. We show results from the analysis of short ( < 5 min) near-daily thermal videos taken throughout the eruption from multiple ground-based locations and continuous time-lapse thermal photos over the period November 16 to November 26. We measure the apparent radius, velocity, and volume flux of the high-temperature gas-and-ash jet and lava fountaining behaviors to investigate the evolution of the explosive activity over multiple time scales (seconds-minutes, hours, and days-weeks). We find fluctuations in volume flux of explosive material that correlate with changes in volcanic tremor and hours-long increases in explosive flux that are immediately preceded by increases in lava effusion rate. Correlated behavior at multiple vents suggests dynamic magma ascent pathways connected in the shallow (tens to hundreds of meters) sub-surface. We interpret the changes in explosivity and the relative amounts of effusive and explosivity to be the result of changes in gas flux and the degree of gas coupling. 
    more » « less