skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Context-Aware Surrogate Modeling for Balancing Approximation and Sampling Costs in Multifidelity Importance Sampling and Bayesian Inverse Problems
Award ID(s):
1761068
PAR ID:
10422374
Author(s) / Creator(s):
;
Date Published:
Journal Name:
SIAM/ASA Journal on Uncertainty Quantification
Volume:
11
Issue:
1
ISSN:
2166-2525
Page Range / eLocation ID:
285 to 319
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Path sampling approaches have become invaluable tools to explore the mechanisms and dynamics of the so-called rare events that are characterized by transitions between metastable states separated by sizable free energy barriers. Their practical application, in particular to ever more complex molecular systems, is, however, not entirely trivial. Focusing on replica exchange transition interface sampling (RETIS) and forward flux sampling (FFS), we discuss a range of analysis tools that can be used to assess the quality and convergence of such simulations, which is crucial to obtain reliable results. The basic ideas of a step-wise evaluation are exemplified for the study of nucleation in several systems with different complexities, providing a general guide for the critical assessment of RETIS and FFS simulations. 
    more » « less
  2. A spatially distributed network contains a large amount of agents with limited sensing, data processing, and communication capabilities. Recent technological advances have opened up possibilities to deploy spatially distributed networks for signal sampling and reconstruction. In this paper, we introduce a graph structure for a distributed sampling and reconstruction system by coupling agents in a spatially distributed network with innovative positions of signals. A fundamental problem in sampling theory is the robustness of signal reconstruction in the presence of sampling noises. For a distributed sampling and reconstruction system, the robustness could be reduced to the stability of its sensing matrix. In this paper, we split a distributed sampling and reconstruction system into a family of overlapping smaller subsystems, and we show that the stability of the sensing matrix holds if and only if its quasi-restrictions to those subsystems have uniform stability. This new stability criterion could be pivotal for the design of a robust distributed sampling and reconstruction system against supplement, replacement and impairment of agents, as we only need to check the uniform stability of affected subsystems. In this paper, we also propose an exponentially convergent distributed algorithm for signal reconstruction, that provides a suboptimal approximation to the original signal in the presence of bounded sampling noises. 
    more » « less