In this paper, high-performance UV photodetectors have been demonstrated based on indium oxide (In2O3) thin films of approximately 1.5–2 μm thick, synthesized by a simple and quick plasma sputtering deposition approach. After the deposition, the thin-film surface was treated with 4–5 nm-sized platinum (Pt) nanoparticles. Then, titanium metal electrodes were deposited onto the sample surface to form a metal–semiconductor–metal (MSM) photodetector of 50 mm2 in size. Raman scattering spectroscopy and scanning electron microscope (SEM) were used to study the crystal structure of the synthesized In2O3 film. The nanoplasmonic enhanced In2O3-based UV photodetectors were characterized by various UV wavelengths at different radiation intensities and temperatures. A high responsivity of up to 18 A/W was obtained at 300 nm wavelength when operating at 180 °C. In addition, the fabricated prototypes show a thermally stable baseline and excellent repeatability to a wide range of UV lights with low illumination intensity when operating at such a high temperature.
more »
« less
Correlation between plasma characteristics, morphology, and microstructure of sputtered CuAl alloy films with varied target geometry
Abstract The effect of target geometry on coating microstructure and morphology is correlated to changes in deposition conditions, plasma characteristics, and film growth during planar and hollow cathode sputtering. The sputtering plasma properties for the two target geometries were characterized via Langmuir probe analysis as a function of power density and Ar pressure to determine the evolution of ion density for each configuration. Films were then synthesized at the low (0.4 W cm −2 ) and high (1.2 W cm −2 ) power densities and characterized using x-ray diffraction, scanning electron microscopy, and electron backscatter diffraction to link changes in texturing, morphology, and microstructure with variations in ion density and sputtering deposition conditions caused by target geometry. It was observed that varying target geometry led to an over threefold increase in deposition rate, homologous temperature, and ion density, which altered the morphology and texture of the film without significant changes to the grain size.
more »
« less
- Award ID(s):
- 2106597
- PAR ID:
- 10422645
- Date Published:
- Journal Name:
- Materials Research Express
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2053-1591
- Page Range / eLocation ID:
- 016402
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Heusler compound Co2MnGa is a topological semimetal with intriguing electronic and magnetic properties, making it a promising candidate for spintronic applications. This study systematically investigates the effects of substrate temperature and radio frequency (RF) sputtering power on the structure, morphology, and anomalous Hall effect (AHE) in Co2MnGa thin films with the goal to uncover trends in growth–morphology–property relationships. Using x-ray diffraction line analysis, we identify variations in film orientation and crystallinity, revealing the emergence of high-index textures at specific growth conditions. Atomic force microscopy imaging provides insight into grain morphology and size distributions demonstrating a correlation between deposition parameters and film texture. Magnetotransport measurements show a strong dependence of AHE on growth conditions, exhibiting a nonmonotonic relationship with RF power and temperature. Despite significant variations in microstructure, a striking linear relationship between AHE and the zero-field slope of the Hall resistivity is observed, suggesting an underlying universal mechanism. These findings provide a foundation for investigating the complex interplay of Co2MnGa informing us broadly that the AHE is strongly tunable by morphology, while at the same time the critical field remains robust.more » « less
-
The impact of the high-power impulse magnetron sputtering (HiPIMS) pulse width on the crystallization, microstructure, and ferroelectric properties of undoped HfO2 films is investigated. HfO2 films were sputtered from a hafnium metal target in an Ar/O2 atmosphere, varying the instantaneous power density by changing the HiPIMS pulse width with fixed time-averaged power and pulse frequency. The pulse width is shown to affect the ion-to-neutral ratio in the depositing species with the shortest pulse durations leading to the highest ion fraction. In situ x-ray diffraction measurements during crystallization demonstrate that the HiPIMS pulse width impacts nucleation and phase formation, with an intermediate pulse width of 110 μs stabilizing the ferroelectric phase over the widest temperature range. Although the pulse width impacts the grain size with the lowest pulse width resulting in the largest grain size, the grain size does not strongly correlate with the phase content or ferroelectric behavior in these films. These results suggest that precise control over the energetics of the depositing species may be beneficial for forming the ferroelectric phase in this material.more » « less
-
Abstract A single-beam ion source was developed and used in combination with magnetron sputtering to modulate the film microstructure. The ion source emits a single beam of ions that interact with the deposited film and simultaneously enhances the magnetron discharge. The magnetron voltage can be adjusted over a wide range, from approximately 240 to 130 V, as the voltage of the ion source varies from 0 to 150 V, while the magnetron current increases accordingly. The low-voltage high-current magnetron discharge enables a ‘soft sputtering mode’, which is beneficial for thin-film growth. Indium tin oxide (ITO) thin films were deposited at room temperature using a combined single-beam ion source and magnetron sputtering. The ion beam resulted in the formation of polycrystalline ITO thin films with significantly reduced resistivity and surface roughness. Single-beam ion-source-enhanced magnetron sputtering has many potential applications in which low-temperature growth of thin films is required, such as coatings for organic solar cells.more » « less
-
Lithium lanthanum tantalate (Li3xLa1/3−xTaO3, x = 0.075) thin films were grown via pulsed laser deposition using background gas atmospheres with varying partial pressures of oxygen and argon. The background gas composition was varied from 100% to 6.6% oxygen, with the pressure fixed at 150 mTorr. The maximum ion conductivity of 1.5 × 10−6 S/cm was found for the film deposited in 100% oxygen. The ion conductivity of the films was found to decrease with reduced oxygen content from 100% to 16.6% O2 in the background gas. The 6.6% oxygen background condition produced ion conductivity that approached that of the 100% oxygen condition film. The lithium transfer from the target to the film was found to decrease monotonically with decreasing oxygen content in the background gas but did not account for all changes in the ion conductivity. The activation energy of ion conduction was measured and found to correlate well with the measured ion conductivity trends. Analysis of x-ray diffraction results revealed that the films also exhibited a change in the lattice parameter that directly correlated with the ion conduction activation energy, indicating that a primary factor for determining the conductivity of these films is the changing size of the ion conduction bottleneck, which controls the activation energy of ion conduction.more » « less
An official website of the United States government

