skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Ephemeral persistence features and the stability of filtered chain complexes
We strengthen the usual stability theorem for Vietoris-Rips (VR) persistent homology of finite metric spaces by building upon constructions due to Usher and Zhang in the context of filtered chain complexes. The information present at the level of filtered chain complexes includes points with zero persistence which provide additional information to that present at homology level. The resulting invariant, called verbose barcode, which has a stronger discriminating power than the usual barcode, is proved to be stable under certain metrics that are sensitive to these ephemeral points. In some situations, we provide ways to compute such metrics between verbose barcodes. We also exhibit several examples of finite metric spaces with identical (standard) VR barcodes yet with different verbose VR barcodes, thus confirming that these ephemeral points strengthen the standard VR barcode.  more » « less
Award ID(s):
2310412
PAR ID:
10596963
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of Computational Geometry
Date Published:
Journal Name:
Journal of computational geometry
Volume:
15
Issue:
2
ISSN:
1920-180X
Page Range / eLocation ID:
258-328
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Knot filtered embedded contact homology was first introduced by Hutchings in 2015; it has been computed for the standard transverse unknot in irrational ellipsoids by Hutchings and for the Hopf link in lens spaces via a quotient by Weiler. While toric constructions can be used to understand the ECH chain complexes of many contact forms adapted to open books with binding the unknot and Hopf link, they do not readily adapt to general torus knots and links. In this paper, we generalize the definition and invariance of knot filtered embedded contact homology to allow for degenerate knots with rational rotation numbers. We then develop new methods for understanding the embedded contact homology chain complex of positive torus knotted fibrations of the standard tight contact 3‐sphere in terms of their presentation as open books and as Seifert fiber spaces. We provide Morse–Bott methods, using a doubly filtered complex and the energy filtered perturbed Seiberg–Witten Floer theory developed by Hutchings and Taubes, and use them to compute the knot filtered embedded contact homology, for odd and positive. 
    more » « less
  2. We introduce harmonic persistent homology spaces for filtrations of finite simplicial complexes. As a result we can associate concrete subspaces of cycles to each bar of the barcode of the filtration. We prove stability of the harmonic persistent homology subspaces, as well as the subspaces associated to the bars of the barcodes, under small perturbations of functions defining them. We relate the notion of ``essential simplices'' introduced in an earlier work to identify simplices which play a significant role in the birth of a bar, with that of harmonic persistent homology. We prove that the harmonic representatives of simple bars maximizes the ``relative essential content'' amongst all representatives of the bar, where the relative essential content is the weight a particular cycle puts on the set of essential simplices. \footnote{An extended abstract of the paper appeared in the Proceedings of the IEEE Symposium on the Foundations of Computer Science, 2021.} 
    more » « less
  3. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    Metric spaces (X, d) are ubiquitous objects in mathematics and computer science that allow for capturing pairwise distance relationships d(x, y) between points x, y ∈ X. Because of this, it is natural to ask what useful generalizations there are of metric spaces for capturing "k-wise distance relationships" d(x_1, …, x_k) among points x_1, …, x_k ∈ X for k > 2. To that end, Gähler (Math. Nachr., 1963) (and perhaps others even earlier) defined k-metric spaces, which generalize metric spaces, and most notably generalize the triangle inequality d(x₁, x₂) ≤ d(x₁, y) + d(y, x₂) to the "simplex inequality" d(x_1, …, x_k) ≤ ∑_{i=1}^k d(x_1, …, x_{i-1}, y, x_{i+1}, …, x_k). (The definition holds for any fixed k ≥ 2, and a 2-metric space is just a (standard) metric space.) In this work, we introduce strong k-metric spaces, k-metric spaces that satisfy a topological condition stronger than the simplex inequality, which makes them "behave nicely." We also introduce coboundary k-metrics, which generalize 𝓁_p metrics (and in fact all finite metric spaces induced by norms) and minimum bounding chain k-metrics, which generalize shortest path metrics (and capture all strong k-metrics). Using these definitions, we prove analogs of a number of fundamental results about embedding finite metric spaces including Fréchet embedding (isometric embedding into 𝓁_∞) and isometric embedding of all tree metrics into 𝓁₁. We also study relationships between families of (strong) k-metrics, and show that natural quantities, like simplex volume, are strong k-metrics. 
    more » « less
  4. Abstract A central challenge in topological data analysis is the interpretation of barcodes. The classical algebraic-topological approach to interpreting homology classes is to build maps to spaces whose homology carries semantics we understand and then to appeal to functoriality. However, we often lack such maps in real data; instead, we must rely on a cross-dissimilarity measure between our observations of a system and a reference. In this paper, we develop a pair of computational homological algebra approaches for relating persistent homology classes and barcodes:persistent extension, which enumerates potential relations between homology classes from two complexes built on the same vertex set, and the method ofanalogous bars, which utilizes persistent extension and the witness complex built from a cross-dissimilarity measure to provide relations across systems. We provide an implementation of these methods and demonstrate their use in comparing homology classes between two samples from the same metric space and determining whether topology is maintained or destroyed under clustering and dimensionality reduction. 
    more » « less
  5. Bahoo, Yeganeh; Georgiou, Konstantinos (Ed.)
    We investigate the maximum subbarcode matching problem which arises from the study of persistent homology and introduce the subbarcode distance on barcodes. A barcode is a set of intervals which correspond to topological features in data and is the output of a persistent homology computation. A barcode A has a subbarcode matching to B if each interval in A matches to an interval in B which contains it. We present an algorithm which takes two barcodes, A and B, and returns a maximum subbarcode matching. 
    more » « less