The effect of DNA methylation on gene expression has been known for decades. However, the mechanism by which DNA methylation functions to repress transcription has remained a major question in the field. Wang et al. now narrow this gap through their examination of the methylation binding protein MBD2 and expose how DNA methylation is read upstream of transcriptional repression.
more »
« less
Simulating 3-symbol Turing machines with SIMD||DNA
SIMD||DNA [Wang et al., 2019] is a model of DNA strand displacement allowing parallel in-memory computation on DNA storage. We show how to simulate an arbitrary 3-symbol space-bounded Turing machine with a SIMD||DNA program, giving a more direct and efficient route to general-purpose information manipulation on DNA storage than the Rule 110 simulation of Wang, Chalk, and Soloveichik [Wang et al., 2019]. We also develop software (https://github.com/UC-Davis-molecular-computing/simd-dna) that can simulate SIMD||DNA programs and produce SVG figures.
more »
« less
- PAR ID:
- 10422662
- Editor(s):
- James Aspnes and Othon Michail
- Date Published:
- Journal Name:
- SAND 2022: 1st Symposium on Algorithmic Foundations of Dynamic Networks
- Volume:
- 221
- Page Range / eLocation ID:
- 14:1--14:15
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ahn, Hee-Kap; Sadakane, Kunihiko (Ed.)We give an O(k³ Δ n log n min(k, log² n) log²(nC))-time algorithm for computing maximum integer flows in planar graphs with integer arc and vertex capacities bounded by C, and k sources and sinks. This improves by a factor of max(k²,k log² n) over the fastest algorithm previously known for this problem [Wang, SODA 2019]. The speedup is obtained by two independent ideas. First we replace an iterative procedure of Wang that uses O(k) invocations of an O(k³ n log³ n)-time algorithm for maximum flow algorithm in a planar graph with k apices [Borradaile et al., FOCS 2012, SICOMP 2017], by an alternative procedure that only makes one invocation of the algorithm of Borradaile et al. Second, we show two alternatives for computing flows in the k-apex graphs that arise in our modification of Wang’s procedure faster than the algorithm of Borradaile et al. In doing so, we introduce and analyze a sequential implementation of the parallel highest-distance push-relabel algorithm of Goldberg and Tarjan [JACM 1988].more » « less
-
Abstract. A common parameter in hydrological modeling frameworks is root zone water storage capacity (SR[L]), which mediates plant water availability during dry periods as well as the partitioning of rainfall between runoff and evapotranspiration. Recently, a simple flux-tracking-based approach was introduced to estimate the value of SR (Wang-Erlandsson et al., 2016). Here, we build upon this original method, which we argue may overestimate SR in snow-dominated catchments due to snow melt and evaporation processes. We propose a simple extension to the method presented by Wang-Erlandsson et al. (2016) and show that the approach provides a lower estimate of SR in snow-dominated watersheds. This SR dataset is available at a 1 km resolution for the continental USA, along with the full analysis code, on the Google Colab and Earth Engine platforms. We highlight differences between the original and new methods across the rain–snow transition in the Southern Sierra Nevada, California, USA. As climate warms and precipitation increasingly arrives as rain instead of snow, the subsurface may be an increasingly important reservoir for storing plant-available water between wet and dry seasons; therefore, improved estimates of SR will better clarify the future role of the subsurface as a storage reservoir that can sustain forests during seasonal dry periods and episodic drought.more » « less
-
The 2019 report of ferroelectricity in (Al,Sc)N [Fichtner et al., J. Appl. Phys. 125, 114103 (2019)] broke a long-standing tradition of considering AlN the textbook example of a polar but non-ferroelectric material. Combined with the recent emergence of ferroelectricity in HfO2-based fluorites [Böscke et al., Appl. Phys. Lett. 99, 102903 (2011)], these unexpected discoveries have reinvigorated studies of integrated ferroelectrics, with teams racing to understand the fundamentals and/or deploy these new materials—or, more correctly, attractive new capabilities of old materials—in commercial devices. The five years since the seminal report of ferroelectric (Al,Sc)N [Fichtner et al., J. Appl. Phys. 125, 114103 (2019)] have been particularly exciting, and several aspects of recent advances have already been covered in recent review articles [Jena et al., Jpn. J. Appl. Phys. 58, SC0801 (2019); Wang et al., Appl. Phys. Lett. 124, 150501 (2024); Kim et al., Nat. Nanotechnol. 18, 422–441 (2023); and F. Yang, Adv. Electron. Mater. 11, 2400279 (2024)]. We focus here on how the ferroelectric wurtzites have made the field rethink domain walls and the polarization reversal process—including the very character of spontaneous polarization itself—beyond the classic understanding that was based primarily around perovskite oxides and extended to other chemistries with various caveats. The tetrahedral and highly covalent bonding of AlN along with the correspondingly large bandgap lead to fundamental differences in doping/alloying, defect compensation, and charge distribution when compared to the classic ferroelectric systems; combined with the unipolar symmetry of the wurtzite structure, the result is a class of ferroelectrics that are both familiar and puzzling, with characteristics that seem to be perfectly enabling and simultaneously nonstarters for modern integrated devices. The goal of this review is to (relatively) quickly bring the reader up to speed on the current—at least as of early 2025—understanding of domains and defects in wurtzite ferroelectrics, covering the most relevant work on the fundamental science of these materials as well as some of the most exciting work in early demonstrations of device structures.more » « less
-
Hardware Transactional Memory (HTM) simplifies concurrent programming and can accelerate multithreaded execution through lock elision. Non-Volatile Memory (NVM) combines the speed and byte addressability of DRAM with the durability of storage, enabling the construction of high-performance, persistent data structures. Unfortunately, the write-back instructions typically needed to ensure post-crash consistency in NVM cause HTM transactions to abort, precluding the straightforward combination of HTM and persistent data structures. The problem goes away on machines with persistent caches, but these require special battery-backed circuitry and are far from commonplace.To combine HTM and persistent data structures, we advocate for buffered durable linearizability (BDL), a relaxed correctness criterion that enables recovery to a "recent" consistent state in the wake of a crash, allowing writes-back to occur outside transactions.Significantly, BDL retains the persistence guarantees of storage systems—such as databases backed by disks or flash—that have relied on buffering for decades.The combination of HTM and buffered durability enables three separate usage scenarios. First, we add durability to an existing HTM-based structure (a van Emde Boas tree due to Khalaji et al.); second, we use HTM to simplify an existing persistent structure (a skiplist due to Wang et al.); third, we "back port" an HTM-based structure optimized for persistent caches (a hash table due to Zhang et al.) to work well on more conventional processors. The first two scenarios yield several-fold improvements in throughput; the third sees very little slowdown.more » « less
An official website of the United States government

