skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Technical note: Accounting for snow in the estimation of root zone water storage capacity from precipitation and evapotranspiration fluxes
Abstract. A common parameter in hydrological modeling frameworks is root zone water storage capacity (SR[L]), which mediates plant water availability during dry periods as well as the partitioning of rainfall between runoff and evapotranspiration. Recently, a simple flux-tracking-based approach was introduced to estimate the value of SR (Wang-Erlandsson et al., 2016). Here, we build upon this original method, which we argue may overestimate SR in snow-dominated catchments due to snow melt and evaporation processes. We propose a simple extension to the method presented by Wang-Erlandsson et al. (2016) and show that the approach provides a lower estimate of SR in snow-dominated watersheds. This SR dataset is available at a 1 km resolution for the continental USA, along with the full analysis code, on the Google Colab and Earth Engine platforms. We highlight differences between the original and new methods across the rain–snow transition in the Southern Sierra Nevada, California, USA. As climate warms and precipitation increasingly arrives as rain instead of snow, the subsurface may be an increasingly important reservoir for storing plant-available water between wet and dry seasons; therefore, improved estimates of SR will better clarify the future role of the subsurface as a storage reservoir that can sustain forests during seasonal dry periods and episodic drought.  more » « less
Award ID(s):
1331940
PAR ID:
10402939
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Hydrology and Earth System Sciences
Volume:
25
Issue:
5
ISSN:
1607-7938
Page Range / eLocation ID:
2861 to 2867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern forest management generally relies on thinning treatments to reduce fuels and mitigate the threat of catastrophic wildfire. They have also been proposed as a tool to augment downstream flows by reducing evapotranspiration. Warming climates are causing many forests to transition from snow-dominated to rain-dominated precipitation regimes—in which water stores are depleted earlier in the summer. However, there are relatively few studies of these systems that directly measure the hydrologic impacts of such treatments during and following snow-free winters. This work compares the below-canopy meteorological and subsurface hydrologic differences between two thinning prescriptions and an unaltered Control during periods of extreme drought and near-record precipitation (with little snow). The field site was within a coniferous forest in the rain-snow transition zone of the southern Cascades, near the Sierra Nevada Range of California. Both thinning-prescriptions had a modest and predictable impact on below-canopy meteorology, which included their causing lower nighttime minimum temperatures in the critical summer months and higher wind speeds. Relative to the Control, both treatments affected soil moisture storage by delaying its annual decline and increasing its minimum value by the end of the season. The onset of soil moisture depletion was strongly tied to the magnitude of winter precipitation. In dry years, it began much earlier within the dense Control stand than in the treated ones, and, without snow, soil moisture was not replenished in the late spring. During high precipitation years, the storage capacity was topped off for all three stands, which resulted in similar timing of moisture decline across them, later in the season. The two thinning prescriptions increased stores through the height of summer (in wet and drought years). Finally, the basal area increment (BAI) of the remaining trees rose in both, suggesting they used the excess moisture to support rapid growth. 
    more » « less
  2. Abstract Summer streamflow predictions are critical for managing water resources; however, warming‐induced shifts from snow to rain regimes impact low‐flow predictive models. Additionally, reductions in snowpack drive earlier peak flows and lower summer flows across the western United States increasing reliance on groundwater for maintaining summer streamflow. However, it remains poorly understood how groundwater contributions vary interannually. We quantify recession limb groundwater (RLGW), defined as the proportional groundwater contribution to the stream during the period between peak stream flow and low flow, to predict summer low flows across three diverse western US watersheds. We ask (a) how do snow and rain dynamics influence interannual variations of RLGW contributions and summer low flows?; (b) which watershed attributes impact the effectiveness of RLGW as a predictor of summer low flows? Linear models reveal that RLGW is a strong predictor of low flows across all sites and drastically improves low‐flow prediction compared to snow metrics at a rain‐dominated site. Results suggest that strength of RLGW control on summer low flows may be mediated by subsurface storage. Subsurface storage can be divided into dynamic (i.e., variability saturated) and deep (i.e., permanently saturated) components, and we hypothesize that interannual variability in dynamic storage contribution to streamflow drives RLGW variability. In systems with a higher proportion of dynamic storage, RLGW is a better predictor of summer low flow because the stream is more responsive to dynamic storage contributions compared to deep‐storage‐dominated systems. Overall, including RLGW improved low‐flow prediction across diverse watersheds. 
    more » « less
  3. Abstract Winters in snow-covered regions have warmed, likely shifting the timing and magnitude of nutrient export, leading to unquantified changes in water quality. Intermittent, seasonal, and permanent snow covers more than half of the global land surface. Warming has reduced the cold conditions that limit winter runoff and nutrient transport, while cold season snowmelt, the amount of winter precipitation falling as rain, and rain-on-snow have increased. We used existing geospatial datasets (rain-on-snow frequency overlain on nitrogen and phosphorous inventories) to identify areas of the contiguous United States (US) where water quality could be threatened by this change. Next, to illustrate the potential export impacts of these events, we examined flow and turbidity data from a large regional rain-on-snow event in the United States’ largest river basin, the Mississippi River Basin. We show that rain-on-snow, a major flood-generating mechanism for large areas of the globe (Berghuijs et al 2019 Water Resour. Res. 55 4582–93; Berghuijs et al 2016 Geophys. Res. Lett. 43 4382–90), affects 53% of the contiguous US and puts 50% of US nitrogen and phosphorus pools (43% of the contiguous US) at risk of export to groundwater and surface water. Further, the 2019 rain-on-snow event in the Mississippi River Basin demonstrates that these events could have large, cascading impacts on winter nutrient transport. We suggest that the assumption of low wintertime discharge and nutrient transport in historically snow-covered regions no longer holds. Critically, however, we lack sufficient data to accurately measure and predict these episodic and potentially large wintertime nutrient export events at regional to continental scales. 
    more » « less
  4. Abstract Evapotranspiration (ET) is co‐regulated by subsurface water availability, atmospheric demand for water, and radiation. Spatial differences in the limiting factors on ET that emerge along the soil‐plant‐atmosphere continuum result in distinct ecohydrological regimes with differing sensitivities to atmospheric and subsurface drivers. However, different components of the soil‐plant‐atmosphere continuum are not equally well understood. Deep subsurface water access is particularly difficult to measure and model, but can sustain ET under drought conditions when shallow soil moisture appears to be acutely limiting. Here, we exploited this principle to identify ecosystems that rely on deep subsurface water availability. We first used a plant hydraulic model to determine the expected ET behavior for plants with deep water access. We then examined 19 flux towers and found that responsiveness of ET to atmospheric conditions during dry periods was indicative of some ecosystems with deep water access. We used the divergent sensitivities of ET to vapor pressure deficit, radiation, and shallow soil moisture to identify distinct ecohydrological regimes in gridded data covering the continental U.S. We diagnosed deep water usage in ecosystems where ET remained sensitive to atmospheric conditions despite being insensitive to shallow soil moisture variability. Further, we found that drought stress, plant hydraulic traits, and ecosystem biophysical variables mediated the sensitivity of ET to aboveground and belowground conditions. 
    more » « less
  5. Internal water storage within trees can be a critical reservoir that helps trees overcome both short- and long-duration environmental stresses. We monitored changes in internal tree water storage in a ponderosa pine on daily and seasonal scales using moisture probes, a dendrometer, and time-lapse electrical resistivity imaging (ERI). These data were used to investigate how patterns of in-tree water storage are affected by changes in sapflow rates, soil moisture, and meteorologic factors such as vapor pressure deficit. Measurements of xylem fluid electrical conductivity were constant in the early growing season while inverted sapwood electrical conductivity steadily increased, suggesting that increases in sapwood electrical conductivity did not result from an increase in xylem fluid electrical conductivity. Seasonal increases in stem electrical conductivity corresponded with seasonal increases in trunk diameter, suggesting that increased electrical conductivity may result from new growth. On the daily scale, changes in inverted sapwood electrical conductivity correspond to changes in sapwood moisture. Wavelet analyses indicated that lag times between inverted electrical conductivity and sapflow increased after storm events, suggesting that as soils wetted, reliance on internal water storage decreased, as did the time required to refill daily deficits in internal water storage. We found short time lags between sapflow and inverted electrical conductivity with dry conditions, when ponderosa pine are known to reduce stomatal conductance to avoid xylem cavitation. A decrease in diel amplitudes of inverted sapwood electrical conductivity during dry periods suggest that the ponderosa pine relied on internal water storage to supplement transpiration demands, but as drought conditions progressed, tree water storage contributions to transpiration decreased. Time-lapse ERI- and wavelet-analysis results highlight the important role internal tree water storage plays in supporting transpiration throughout a day and during periods of declining subsurface moisture. 
    more » « less