skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges and Benchmark Datasets for Machine Learning in the Atmospheric Sciences: Definition, Status, and Outlook
Abstract Benchmark datasets and benchmark problems have been a key aspect for the success of modern machine learning applications in many scientific domains. Consequently, an active discussion about benchmarks for applications of machine learning has also started in the atmospheric sciences. Such benchmarks allow for the comparison of machine learning tools and approaches in a quantitative way and enable a separation of concerns for domain and machine learning scientists. However, a clear definition of benchmark datasets for weather and climate applications is missing with the result that many domain scientists are confused. In this paper, we equip the domain of atmospheric sciences with a recipe for how to build proper benchmark datasets, a (nonexclusive) list of domain-specific challenges for machine learning is presented, and it is elaborated where and what benchmark datasets will be needed to tackle these challenges. We hope that the creation of benchmark datasets will help the machine learning efforts in atmospheric sciences to be more coherent, and, at the same time, target the efforts of machine learning scientists and experts of high-performance computing to the most imminent challenges in atmospheric sciences. We focus on benchmarks for atmospheric sciences (weather, climate, and air-quality applications). However, many aspects of this paper will also hold for other aspects of the Earth system sciences or are at least transferable. Significance Statement Machine learning is the study of computer algorithms that learn automatically from data. Atmospheric sciences have started to explore sophisticated machine learning techniques and the community is making rapid progress on the uptake of new methods for a large number of application areas. This paper provides a clear definition of so-called benchmark datasets for weather and climate applications that help to share data and machine learning solutions between research groups to reduce time spent in data processing, to generate synergies between groups, and to make tool developments more targeted and comparable. Furthermore, a list of benchmark datasets that will be needed to tackle important challenges for the use of machine learning in atmospheric sciences is provided.  more » « less
Award ID(s):
2019758
PAR ID:
10422671
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Artificial Intelligence for the Earth Systems
Volume:
1
Issue:
3
ISSN:
2769-7525
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Machine learning (ML) provides a powerful framework for the analysis of high‐dimensional datasets by modelling complex relationships, often encountered in modern data with many variables, cases and potentially non‐linear effects. The impact of ML methods on research and practical applications in the educational sciences is still limited, but continuously grows, as larger and more complex datasets become available through massive open online courses (MOOCs) and large‐scale investigations. The educational sciences are at a crucial pivot point, because of the anticipated impact ML methods hold for the field. To provide educational researchers with an elaborate introduction to the topic, we provide an instructional summary of the opportunities and challenges of ML for the educational sciences, show how a look at related disciplines can help learning from their experiences, and argue for a philosophical shift in model evaluation. We demonstrate how the overall quality of data analysis in educational research can benefit from these methods and show how ML can play a decisive role in the validation of empirical models. Specifically, we (1) provide an overview of the types of data suitable for ML and (2) give practical advice for the application of ML methods. In each section, we provide analytical examples and reproducible R code. Also, we provide an extensive Appendix on ML‐based applications for education. This instructional summary will help educational scientists and practitioners to prepare for the promises and threats that come with the shift towards digitisation and large‐scale assessment in education. Context and implicationsRationale for this studyIn 2020, the worldwide SARS‐COV‐2 pandemic forced the educational sciences to perform a rapid paradigm shift with classrooms going online around the world—a hardly novel but now strongly catalysed development. In the context of data‐driven education, this paper demonstrates that the widespread adoption of machine learning techniques is central for the educational sciences and shows how these methods will become crucial tools in the collection and analysis of data and in concrete educational applications. Helping to leverage the opportunities and to avoid the common pitfalls of machine learning, this paper provides educators with the theoretical, conceptual and practical essentials.Why the new findings matterThe process of teaching and learning is complex, multifaceted and dynamic. This paper contributes a seminal resource to highlight the digitisation of the educational sciences by demonstrating how new machine learning methods can be effectively and reliably used in research, education and practical application.Implications for educational researchers and policy makersThe progressing digitisation of societies around the globe and the impact of the SARS‐COV‐2 pandemic have highlighted the vulnerabilities and shortcomings of educational systems. These developments have shown the necessity to provide effective educational processes that can support sometimes overwhelmed teachers to digitally impart knowledge on the plan of many governments and policy makers. Educational scientists, corporate partners and stakeholders can make use of machine learning techniques to develop advanced, scalable educational processes that account for individual needs of learners and that can complement and support existing learning infrastructure. The proper use of machine learning methods can contribute essential applications to the educational sciences, such as (semi‐)automated assessments, algorithmic‐grading, personalised feedback and adaptive learning approaches. However, these promises are strongly tied to an at least basic understanding of the concepts of machine learning and a degree of data literacy, which has to become the standard in education and the educational sciences.Demonstrating both the promises and the challenges that are inherent to the collection and the analysis of large educational data with machine learning, this paper covers the essential topics that their application requires and provides easy‐to‐follow resources and code to facilitate the process of adoption. 
    more » « less
  2. Abstract Optimal transport (OT) methods seek a transformation map (or plan) between two probability measures, such that the transformation has the minimum transportation cost. Such a minimum transport cost, with a certain power transform, is called the Wasserstein distance. Recently, OT methods have drawn great attention in statistics, machine learning, and computer science, especially in deep generative neural networks. Despite its broad applications, the estimation of high‐dimensional Wasserstein distances is a well‐known challenging problem owing to the curse‐of‐dimensionality. There are some cutting‐edge projection‐based techniques that tackle high‐dimensional OT problems. Three major approaches of such techniques are introduced, respectively, the slicing approach, the iterative projection approach, and the projection robust OT approach. Open challenges are discussed at the end of the review. This article is categorized under:Statistical and Graphical Methods of Data Analysis > Dimension ReductionStatistical Learning and Exploratory Methods of the Data Sciences > Manifold Learning 
    more » « less
  3. ABSTRACT With renewable energy being aggressively integrated into the grid, energy supplies are becoming vulnerable to weather and the environment, and are often incapable of meeting population demands at a large scale if not accurately predicted for energy planning. Understanding consumers' power demands ahead of time and the influences of weather on consumption and generation can help producers generate effective power management plans to support the target demand. In addition to the high correlation with the environment, consumers' behaviors also cause non‐stationary characteristics of energy data, which is the main challenge for energy prediction. In this survey, we perform a review of the literature on prediction methods in the energy field. So far, most of the available research encompasses one type of generation or consumption. There is no research approaching prediction in the energy sector as a whole and its correlated features. We propose to address the energy prediction challenges from both consumption and generation sides, encompassing techniques from statistical to machine learning techniques. We also summarize the work related to energy prediction, electricity measurements, challenges related to energy consumption and generation, energy forecasting methods, and real‐world energy forecasting resources, such as datasets and software solutions for energy prediction. This article is categorized under:Application Areas > Industry Specific ApplicationsTechnologies > PredictionTechnologies > Machine Learning 
    more » « less
  4. Establishing open and general benchmarks has been a critical driving force behind the success of modern machine learning techniques. As machine learning is being applied to broader domains and tasks, there is a need to establish richer and more diverse benchmarks to better reflect the reality of the application scenarios. Graph learning is an emerging field of machine learning that urgently needs more and better benchmarks. To accommodate the need, we introduce Graph Learning Indexer (GLI), a benchmark curation platform for graph learning. In comparison to existing graph learning benchmark libraries, GLI highlights two novel design objectives. First, GLI is designed to incentivize dataset contributors. In particular, we incorporate various measures to minimize the effort of contributing and maintaining a dataset, increase the usability of the contributed dataset, as well as encourage attributions to different contributors of the dataset. Second, GLI is designed to curate a knowledge base, instead of a plain collection, of benchmark datasets. We use multiple sources of meta information to augment the benchmark datasets with rich characteristics, so that they can be easily selected and used in downstream research or development. The source code of GLI is available at https://github.com/Graph-Learning-Benchmarks/gli. 
    more » « less
  5. Abstract The hydrologic community has experienced a surge in interest in machine learning in recent years. This interest is primarily driven by rapidly growing hydrologic data repositories, as well as success of machine learning in various academic and commercial applications, now possible due to increasing accessibility to enabling hardware and software. This overview is intended for readers new to the field of machine learning. It provides a non‐technical introduction, placed within a historical context, to commonly used machine learning algorithms and deep learning architectures. Applications in hydrologic sciences are summarized next, with a focus on recent studies. They include the detection of patterns and events such as land use change, approximation of hydrologic variables and processes such as rainfall‐runoff modeling, and mining relationships among variables for identifying controlling factors. The use of machine learning is also discussed in the context of integrated with process‐based modeling for parameterization, surrogate modeling, and bias correction. Finally, the article highlights challenges of extrapolating robustness, physical interpretability, and small sample size in hydrologic applications. This article is categorized under:Science of Water 
    more » « less