skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-way species interactions reverse the positive pairwise effects of two natives on an exotic invader
Abstract The disruptive effects of tertiary species on otherwise positive pairwise species interactions (e.g. context-dependent parasitism in pollinator syndromes) is well-known. However, few—if any—studies have investigated how invasive plants affect interactions between facilitative plants and their native plant communities. Further, if tertiary invasive species can change interactions among native species from positive to negative, then a tertiary native should be capable of the same phenom for pairwise interactions between natives and invasives. Our previous research indicates invasive black mustard ( Brassica nigra ) changes interaction signs for otherwise positive species interactions between the dominant, native facilitator California buckwheat ( Eriogonum fasciculatum ) and its co-dominant beneficiary California sagebrush ( Artemisia californica ) in semi-arid California coastal sage scrub habitat. Here, E. fasciculatum and A. californica seedlings increased B. nigra shoot growth in pairwise species interactions in the greenhouse. However, in three-way species interactions, E. fasciculatum and A. californica together reduced B. nigra SLA, height, and reproductive potential while not increasing shoot DW. In three-way species interactions, B. nigra did not significantly reduce E. fasciculatum facilitation of A. californica . Also surprisingly, light competition with B. nigra resulted in an increase in A. californica height , which reduced the negative effects of A. californica light competition on shade-intolerant E. fasciculatum. In an additive field experiment, A. californica protected E. fasciculatum from facilitating germination and growth of B. nigra when water competition was minimized. Taken together, this study demonstrates the importance of studying species interactions between competitive, native perennials in the current ecological context of invaded ecosystems.  more » « less
Award ID(s):
2032435
PAR ID:
10422723
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Plant Ecology
Volume:
224
Issue:
4
ISSN:
1385-0237
Page Range / eLocation ID:
349 to 359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Positive interactions can drive the assembly of desert plant communities, but we know little about the species-specificity of positive associations between native shrubs and invasive annual species along aridity gradients. These measures are essential for explaining, predicting, and managing community-level responses to plant invasions and environmental change. Here, we measured the intensity of spatial associations among native shrubs and the annual plant community—including multiple invasive species and their native neighbors—along an aridity gradient across the Mojave and San Joaquin Deserts, United States. Along the gradient, we sampled the abundance and species richness of invasive and native annual species using 180 pairs of shrub and open microsites. Across the gradient, the invasive annuals Bromus madritensis ssp. rubens ( B. rubens ), B. tectorum , B. diandrus, Hordeum murinum , and Brassica tournefortii were consistently more abundant under shrubs than away from shrubs, suggesting positive effects of shrubs on these species. In contrast, abundance of the invasive annual Schismus spp. was greater away from shrubs than under shrubs, suggesting negative effects of shrubs on this species. Similarly, native annual abundance (pooled) and native species richness were greater away from shrubs than under shrubs. Shrub-annual associations were not influenced by shrub size or aridity. Interestingly, we found correlative evidence that B. rubens reduced native abundance (pooled), native species richness, and exotic abundance (pooled) under, but not away from shrubs. We conclude that native shrubs have considerable potential to directly (by increasing invader abundance) and indirectly (by increasing negative impacts of invaders on neighbors) facilitate plant invasions along broad environmental gradients, but these effects may depend more upon invader identity than environmental severity. 
    more » « less
  2. null (Ed.)
    Abstract In a globalized world, plant invasions are common challenges for native ecosystems. Although a considerable number of invasive plants form arbuscular mycorrhizae, interactions between arbuscular mycorrhizal (AM) fungi and invasive and native plants are not well understood. In this study, we conducted a greenhouse experiment examining how AM fungi affect interactions of co-occurring plant species in the family Asteracea, invasive Echinops sphaerocephalus and native forb of central Europe Inula conyzae . The effects of initial soil disturbance, including the effect of intact or disturbed arbuscular mycorrhizal networks (CMNs), were examined. AM fungi supported the success of invasive E. sphaerocephalus in competition with native I. conyzae , regardless of the initial disturbance of CMNs. The presence of invasive E. sphaerocephalus decreased mycorrhizal colonization in I. conyzae , with a concomitant loss in mycorrhizal benefits. Our results confirm AM fungi represent one important mechanism of plant invasion for E. sphaerocephalus in semi-natural European grasslands. 
    more » « less
  3. Abstract Some invasive plant species rapidly evolve greater size and/or competitive ability in their nonnative ranges. However, it is not well known whether these traits transfer back to the native range, or instead represent genotype‐by‐environment interactions where traits are context specific to communities in the new range where the evolution occurred. Insight into transferability vs. context specificity can be tested using experiments performed with individuals from populations from the native and nonnative ranges of exotic invasive species. Using a widespread invasive plant species in Europe,Solidago gigantea, we established reciprocal common garden experiments in the native range (Montana, North America;n = 4) and the nonnative range (Hungary, Europe;n = 4) to assess differences in size, vegetative shoot number, and herbivory between populations from the native and nonnative ranges. In a greenhouse experiment, we also tested whether the inherent competitive ability of genotypes from 15 native and 15 invasive populations differed when pitted against 11 common native North American competitors. In common gardens, plants from both ranges considered together produced five times more biomass, grew four times taller, and developed five times more rhizomes in the nonnative range garden compared to the native range garden. The interaction between plant origin and the common garden location was highly significant, with plants from Hungary performing better than plants from Montana when grown in Hungary, and plants from Montana performing better than plants from Hungary when grown in Montana. In the greenhouse, there were no differences in the competitive effects and responses ofS. giganteaplants from the two ranges when grown with North American natives. Our results suggest thatS. giganteamight have undergone rapid evolution for greater performance abroad, but if so, this response does not translate to greater performance at home. 
    more » « less
  4. null (Ed.)
    Plant soil feedback (PSF) occurs when a plant modifies soil biotic properties and those changes in turn influence plant growth, survival or reproduction. These feedback effects are not well understood as mechanisms for invasive plant species. Eragrostis lehmanniana is an invasive species that has extensively colonized the southwest US. To address how PSFs may affect E. lehmanniana invasion and native Bouteloua gracilis growth, soil inoculant from four sites of known invasion age at the Appleton-Whittell Audubon Research Ranch in Sonoita, AZ were used in a PSF greenhouse study, incorporating a replacement series design. The purpose of this research was to evaluate PSF conspecific and heterospecific effects and competition outcomes between the invasive E. lehmanniana and a native forage grass, Bouteloua gracilis . Eragrostis lehmanniana PSFs were beneficial to B. gracilis if developed in previously invaded soil. Plant-soil feedback contributed to competitive suppression of B. gracilis only in the highest ratio of E. lehmanniana to B. gracilis . Plant-soil feedback did not provide an advantage to E. lehmanniana in competitive interactions with B. gracilis at low competition levels but were advantageous to E. lehmanniana at the highest competition ratio, indicating a possible density-dependent effect. Despite being beneficial to B. gracilis under many conditions, E. lehmanniana was the superior competitor. 
    more » « less
  5. Abstract Interspecific competition, environmental filtering, or spatial variation in productivity can contribute to positive or negative spatial covariance in the abundances of species across ensembles (i.e., groups of interacting species defined by geography, resource use, and taxonomy). In contrast, density compensation should give rise to a negative relationship between ecomorphological similarity and abundance of species within ensembles. We evaluated (1) whether positive or negative covariances characterized the pairwise relationships of 21 species of Congolese shrew, and (2) whether density compensation characterized the structure of each of 36 Congolese shrew ensembles, and did so based on the abundances or biomasses of species. In general, positive covariance is more common than negative covariance based on considerations of abundance or biomass, suggesting dominant roles for environmental filtering and productivity. Nonetheless, negative covariance is more common for ecomorphologically similar species, suggesting a dominant role for competition within functional groups. Effects of abundance or biomass compensation, via pairwise or diffuse competitive interactions, were detected less often than expected by chance, suggesting that interspecific competition is not the dominant mechanism structuring these ensembles. Effects of competition may be balanced by responses to variation in resource abundance among sites in a landscape or among niche spaces within sites. Future studies of compensatory effects should incorporate considerations of heterogeneity in the abundance and distribution of resources in ecological space to better isolate the effects of competition and resource abundance, which can have opposing effects on community structure. 
    more » « less