Shadowgraphic measurements are combined with theory on gas-dynamics to investigate the shock physics associated with nanosecond laser ablation of cerium metal targets. Time-resolved shadowgraphic imaging is performed to measure the propagation and attenuation of the laser-induced shockwave through air and argon atmospheres at various background pressures, where stronger shockwaves characterized by higher propagation velocities are observed for higher ablation laser irradiances and lower pressures. The Rankine-Hugoniot relations are also employed to estimate the pressure, temperature, density, and flow velocity of the shock-heated gas located immediately behind the shock front, predicting larger pressure ratios and higher temperatures for stronger laser-induced shockwaves.
more »
« less
Experimental and computational investigation into the hydrodynamics and chemical dynamics of laser ablation aluminum plasmas
Laser ablation plasma chemistry is governed by a complex interplay between hydrodynamic plasma-gas mixing processes, thermodynamics, and rapid high-temperature chemical reactions. In this work, we investigate the gas-phase oxidation chemistry of ns-laser ablation aluminum plasmas in air using optical spectroscopy combined with advanced multi-physics modeling. Experimental measurements demonstrate the formation of AlO in the plasma plume as early as 1 μs while computational results reveal that several Al x O y species are distributed in the periphery of the plume at even earlier times (<20 ns) in the presence of large temperature gradients and strong shockwaves. Interactions with the ablation crater during rapid plume expansion are shown to initiate vortex formation, followed by mixing dynamics that work to pull AlO into the vortices to react with gas-phase Al to form Al 2 O. Oxygen and several aluminum oxides are simultaneously pulled up through the stem of the fireball, encouraging further intermixing between reacting species and enhanced molecular formation. This work concludes that chemical dynamics in laser ablation plasmas is driven by diffusion processes, concentration gradients, and plume hydrodynamics while strong shockwaves generated during laser ablation do not impede chemical reactions.
more »
« less
- Award ID(s):
- 1905301
- PAR ID:
- 10422731
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 25
- Issue:
- 23
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 15666 to 15675
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aluminum monochloride (AlCl) has been proposed as a promising candidate for laser cooling to ultracold temperatures, and recent spectroscopy results support this prediction. It is challenging to produce large numbers of AlCl molecules because it is a highly reactive open-shell molecule and must be generated in situ . Here we show that pulsed-laser ablation of stable, non-toxic mixtures of Al with alkali or alkaline earth chlorides, denoted XCl n , can provide a robust and reliable source of cold AlCl molecules. Both the chemical identity of XCl n and the Al : XCl n molar ratio are varied, and the yield of AlCl is monitored using absorption spectroscopy in a cryogenic gas. For KCl, the production of Al and K atoms was also monitored. We model the AlCl production in the limits of nonequilibrium recombination dominated by first-encounter events. The non-equilibrium model is in agreement with the data and also reproduces the observed trend with different XCl n precursors. We find that AlCl production is limited by the solid-state densities of Al and Cl atoms and the recondensation of Al atoms in the ablation plume. We suggest future directions for optimizing the production of cold AlCl molecules using laser ablation.more » « less
-
Abstract Plasma stability in reactive mixtures is critical for various applications from plasma-assisted combustion to gas conversion. To generate stable and uniform plasmas and control the transition towards filamentation, the underlying physics and chemistry need a further look. This work investigates the plasma thermal-chemical instability triggered by dimethyl-ether (DME) low-temperature oxidation in a repetitive nanosecond pulsed dielectric barrier discharge. First, a plasma-combustion kinetic mechanism of DME/air is developed and validated using temperature and ignition delay time measurements in quasi-uniform plasmas. Then the multi-stage dynamics of thermal-chemical instability is experimentally explored: the DME/air discharge was initially uniform, then contracted to filaments, and finally became uniform again before ignition. By performing chemistry modeling and analyzing the local thermal balance, it is found that such nonlinear development of the thermal-chemical instability is controlled by the competition between plasma-enhanced low-temperature heat release and the increasing thermal diffusion at higher temperature. Further thermal-chemical mode analysis identifies the chemical origin of this instability as DME low-temperature chemistry. This work connects experiment measurements with theoretical analysis of plasma thermal-chemical instability and sheds light on future chemical control of the plasma uniformity.more » « less
-
Abstract In this work, a scalable and rapid process is developed for creating a low‐cost humidity sensor for wireless monitoring of moisture levels within packaged goods. The sensor comprises a moisture‐sensitive interdigitated capacitor connected to a planar spiral coil, forming an LC circuit whose resonant frequency is a function of environmental humidity. The sensor is fabricated on a commercially available metallized parchment paper through selective laser ablation of the laminated aluminum (Al) film on the parchment paper substrate. The laser ablation process provides a unique one‐step patterning of the conductive Al layer on the paper while simultaneously creating high surface area Al2O3nanoparticles within the laser‐ablated regions. The intrinsic humidity‐responsive characteristics of the laser‐induced Al2O3nanostructures provide the wireless sensor with a tenfold higher sensitivity to humidity than a similar LC resonant sensor prepared by conventional photolithography‐based processes on FR‐4 substrates. The frequency change of the sensor is observed to be a linear function within the range of 0−85% RH, providing an average sensitivity of −87 kHz RH−1with good repeatability and stable performance. Furthermore, the employment of scalable laser fabrication processes using commercially available inexpensive materials renders these technologies viable for roll‐to‐roll manufacturing of low‐cost wireless sensors for smart packaging applications.more » « less
-
Abstract Plasmas interacting with liquid microdroplets are gaining momentum due to their ability to significantly enhance the reactivity transfer from the gas phase plasma to the liquid. This is, for example, critically important for efficiently decomposing organic pollutants in water. In this contribution, the role of ⋅ OH as well as non- ⋅ OH-driven chemistry initiated by the activation of small water microdroplets in a controlled environment by diffuse RF glow discharge in He with different gas admixtures (Ar, O 2 and humidified He) at atmospheric pressure is quantified. The effect of short-lived radicals such as O ⋅ and H ⋅ atoms, singlet delta oxygen (O 2 ( a 1 Δ g )), O 3 and metastable atoms of He and Ar, besides ⋅ OH radicals, on the decomposition of formate dissolved in droplets was analyzed using detailed plasma diagnostics, droplet characterization and ex situ chemical analysis of the treated droplets. The formate decomposition increased with increasing droplet residence time in the plasma, with ∼70% decomposition occurring within ∼15 ms of the plasma treatment time. The formate oxidation in the droplets is shown to be limited by the gas phase ⋅ OH flux at lower H 2 O concentrations with a significant enhancement in the formate decomposition at the lowest water concentration, attributed to e − /ion-induced reactions. However, the oxidation is diffusion limited in the liquid phase at higher gaseous ⋅ OH concentrations. The formate decomposition in He/O 2 plasma was similar, although with an order of magnitude higher O ⋅ radical density than the ⋅ OH density in the corresponding He/H 2 O plasma. Using a one-dimensional reaction–diffusion model, we showed that O 2 ( a 1 Δ g ) and O 3 did not play a significant role and the decomposition was due to O ⋅ , and possibly ⋅ OH generated in the vapor containing droplet-plasma boundary layer.more » « less
An official website of the United States government

