skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lift Force Analysis for an Electrodynamic Wheel Maglev Vehicle
This paper used an analytic based 3-D second order vector potential model to study the vertical dynamic force ripple and dynamic airgap height change when using a one pole-pair electrodynamic wheel (EDW) maglev vehicle. A one-pole pair EDW creates the lowest lift specific power; however transient finite element analysis (FEA) also shows that the one pole-pair EDW will create a large oscillating vertical force when maintaining a static airgap height. A dynamically coupled eddy current model was used to confirm that when the airgap length is allowed to change with time then an increase in vertical airgap creates a large decrease in lift force thereby mitigating any large oscillatory airgap height changes from being created by the one pole-pair EDW. The small airgap height variation was exper-imentally confirmed by using a four-wheeled proof-of-principle radial EDW maglev vehicle.  more » « less
Award ID(s):
1810489
PAR ID:
10422743
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE transactions on magnetics
ISSN:
0018-9464
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports on the electromagnetic analysis and experimental testing of a newly invented six-degree of freedom electrodynamic wheel (EDW) magnetic levitation (maglev) vehicle that can stably levitate over a passive low-cost U-guideway. The U-guideway is composed of two sections of L-track aluminum sheet. Both a radial and an axial proof-of-principle EDW maglev vehicle has been built and experimentally tested. The EDW-maglev vehicle contains four one pole-pair diametric magnetized magnets that are driven using a low-cost motor and motor controller. No advanced controls are needed to provide basic stability. A 3-D transient finite element analysis model was used to study the 3-D forces created when the magnets are rotated over the aluminum L-track. The track design study showed that in addition to providing lateral recentering force the L-track can also be used to increases thrust and lift force. 
    more » « less
  2. This paper re-examines the basis for each eddy current stiffness term computed from prior published steady-state eddy current models. The paper corrects prior analysis work by confirming, through the use of 2-D and 3-D dynamic finite element analysis modelling, that when a magnetic source is moving over an infinite-wide and infinite-long conductive sheet guideway the steady-state lateral and translational stiffness terms will be zero and only the vertical coupled stiffness terms need to be modelled. Using these observations, a much simplified 6 degrees-of-freedom (DoF) linearized eddy current dynamic force model can be used to compute the steady-state force changes in eddy current based maglev vehicles when operating over a wide uniform conductive track. 
    more » « less
  3. This paper studies the force creation capabilities of active magnetic bearings (AMBs) and bearingless motors from the perspective of multiple airgap space harmonics/pole-pairs. This approach is analytic-based and is useful in explaining the underlying physics of the machine and conducting force capacity analysis for different numbers of phases/poles. The presented per unit (p.u.) model makes the force capacity results applicable to any motor dimensions and peak airgap field value. An explanation of the force capacity in bearingless motors is provided when only two harmonics are controlled (which is the typical approach in bearingless motor literature) and the relationship between torque, force, and magnetizing field values is identified. Using this relationship, optimal magnetizing field values for maximum torque-force capability are identified, which is useful to consider when designing a bearingless motor. This paper extends the force capacity analysis to bearingless motors with multiple (more than two) controllable space harmonics and proposes that force enhancement can be achieved through the control of the magnitudes and angles of these harmonics. Results show that potential force enhancement of over 40% in bearingless machines can be achieved when controlling four airgap harmonics as opposed to two harmonics. These results suggest that being able to control multiple harmonics can yield high performance designs. 
    more » « less
  4. The rotation of an electrodynamic wheel (EDW) above a flat conductive, non-magnetic, track induces currents in the track that can create lift and thrust/braking force. This paper presents a new type of dual-EDW that consists of two EDWs in series that can also create a controllable lateral force. The magnitude and direction of the lateral force can be changed via the relative phase angle shifting of the two rotors. The changes in the lateral force magnitude as well as direction are shown to not affect the lift and thrust force magnitude. The geometric analysis of the design is presented and the practical difficulty of implementing the design is also discussed. 
    more » « less
  5. Road accidents caused by heavy rain have become a frightening issue in recent years requiring investigation. In this regard, an aerodynamic comparative and experimental rain study is carried out to observe the flow phenomena change around a generic ground vehicle (Ahmed Body at a scale) and the utility truck. In this paper, a Discrete Phase Model (DPM) based computational methodology is used to estimate the effect of rain on aerodynamic performance. First, an experimental rain study of the Ahmed body at a scale that is representative of a car or light truck was conducted at the Wall of Wind (WOW) large-scale testing facility using force measurement equipment. In addition, the experiment allowed drag, lift, and side-force coefficients to be measured at yaw angles up to 55 degrees. Next, experimental results are presented for the Ahmed Body back angle of 35 degrees, then compared to validate the computational model for ground vehicle aerodynamics. Afterwards, we investigated the effect of heavy rainfall (LWC = 30 g/m3) on the external aerodynamics of the utility truck with the morphing boom equipment using the validated computational fluid dynamics method, and the external flow is presented using a computer visualization. Finally, force & moment coefficients and velocity distributions around the utility truck are computed for each case, and the results are compared. Keywords: Experimental Wind-Driven Rain Wind Tunnel Testing, Heavy Rainfall, The Ahmed Body, Utility Truck, Morphing Boom Equipment, Discrete Phase Model (DPM), Automotive Aerodynamics, Computational Fluid Dynamics (CFD) 
    more » « less