skip to main content


This content will become publicly available on July 1, 2024

Title: Defying Gravity and Gadget Numerosity: The Complexity of the Hanano Puzzle
Using the notion of visibility representations, our paper establishes a new property of in- stances of the Nondeterministic Constraint Logic (NCL) problem (a PSPACE-complete problem that is very convenient to prove the PSPACE-hardness of reversible games with pushing blocks). Direct use of this property introduces an explosion in the number of gadgets needed to show PSPACE-hardness, but we show how to bring that number from 32 down to only three in general, and down to two in a specific case! We propose it as a step towards a broader and more general framework for studying games with irreversible gravity, and use this connection to guide an indirect polynomial-time many-one reduction from the NCL problem to the Hanano Puzzle—which is NP-hard—to prove it is in fact PSPACE-complete.  more » « less
Award ID(s):
2006496
NSF-PAR ID:
10422862
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the 25th International Conference on Descriptional Complexity of Formal Systems
Volume:
25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Schmidt’s game and other similar intersection games have played an important role in recent years in applications to number theory, dynamics, and Diophantine approximation theory. These games are real games, that is, games in which the players make moves from a complete separable metric space. The determinacy of these games trivially follows from the axiom of determinacy for real games, $\mathsf {AD}_{\mathbb R}$ , which is a much stronger axiom than that asserting all integer games are determined, $\mathsf {AD}$ . One of our main results is a general theorem which under the hypothesis $\mathsf {AD}$ implies the determinacy of intersection games which have a property allowing strategies to be simplified. In particular, we show that Schmidt’s $(\alpha ,\beta ,\rho )$ game on $\mathbb R$ is determined from $\mathsf {AD}$ alone, but on $\mathbb R^n$ for $n \geq 3$ we show that $\mathsf {AD}$ does not imply the determinacy of this game. We then give an application of simple strategies and prove that the winning player in Schmidt’s $(\alpha , \beta , \rho )$ game on $\mathbb {R}$ has a winning positional strategy, without appealing to the axiom of choice. We also prove several other results specifically related to the determinacy of Schmidt’s game. These results highlight the obstacles in obtaining the determinacy of Schmidt’s game from $\mathsf {AD}$ . 
    more » « less
  2. We study the parallel repetition of one-round games involving players that can use quantum entanglement. A major open question in this area is whether parallel repetition reduces the entangled value of a game at an exponential rate --- in other words, does an analogue of Raz's parallel repetition theorem hold for games with players sharing quantum entanglement? Previous results only apply to special classes of games. We introduce a class of games we call anchored. We then introduce a simple transformation on games called \emph{anchoring}, inspired in part by the Feige-Kilian transformation, that turns \emph{any} (multiplayer) game into an anchored game. Unlike the Feige-Kilian transformation, our anchoring transformation is completeness preserving. We prove an exponential-decay parallel repetition theorem for anchored games that involve any number of entangled players. We also prove a threshold version of our parallel repetition theorem for anchored games. Together, our parallel repetition theorems and anchoring transformation provide the first hardness amplification techniques for general entangled games. We give an application to the games version of the Quantum PCP Conjecture. 
    more » « less
  3. Query-to-communication lifting theorems, which connect the query complexity of a Boolean function to the communication complexity of an associated “lifted” function obtained by composing the function with many copies of another function known as a gadget, have been instrumental in resolving many open questions in computational complexity. A number of important complexity questions could be resolved if we could make substantial improvements in the input size required for lifting with the Index function, which is a universal gadget for lifting, from its current near-linear size down to polylogarithmic in the number of inputs N of the original function or, ideally, constant. The near-linear size bound was recently shown by Lovett, Meka, Mertz, Pitassi and Zhang [20] using a recent breakthrough improvement on the Sunflower Lemma to show that a certain graph associated with an Index function of that size is a disperser. They also stated a conjecture about the Index function that is essential for further improvements in the size required for lifting with Index using current techniques. In this paper we prove the following; - The conjecture of Lovett et al. is false when the size of the Index gadget is less than logarithmic in N . - The same limitation applies to the Inner-Product function. More precisely, the Inner-Product function, which is known to satisfy the disperser property at size O(log N ), also does not have this property when its size is less than log N . - Notwithstanding the above, we prove a lifting theorem that applies to Index gadgets of any size at least 4 and yields lower bounds for a restricted class of communication protocols in which one of the players is limited to sending parities of its inputs. - Using a modification of the same idea with improved lifting parameters we derive a strong lifting theorem from decision tree size to parity decision tree size. We use this, in turn, to derive a general lifting theorem in proof complexity from tree-resolution size to tree-like Res(⊕) refutation size, which yields many new exponential lower bounds on such proofs. 
    more » « less
  4. Query-to-communication lifting theorems, which connect the query complexity of a Boolean function to the communication complexity of an associated ‘lifted’ function obtained by composing the function with many copies of another function known as a gadget, have been instrumental in resolving many open questions in computational complexity. A number of important complexity questions could be resolved if we could make substantial improvements in the input size required for lifting with the Index function, which is a universal gadget for lifting, from its current near-linear size down to polylogarithmic in the number of inputs N of the original function or, ideally, constant. The near-linear size bound was recently shown by Lovett, Meka, Mertz, Pitassi and Zhang using a recent breakthrough improvement on the Sunflower Lemma to show that a certain graph associated with an Index function of that size is a disperser. They also stated a conjecture about the Index function that is essential for further improvements in the size required for lifting with Index using current techniques. In this paper we prove the following; • The conjecture of Lovett et al. is false when the size of the Index gadget is less than logarithmic in N. • The same limitation applies to the Inner-Product function. More precisely, the Inner-Product function, which is known to satisfy the disperser property at size O(log N), also does not have this property when its size is less than log N. • Notwithstanding the above, we prove a lifting theorem that applies to Index gadgets of any size at least 4 and yields lower bounds for a restricted class of communication protocols in which one of the players is limited to sending parities of its inputs. • Using a modification of the same idea with improved lifting parameters we derive a strong lifting theorem from decision tree size to parity decision tree size. We use this, in turn, to derive a general lifting theorem in proof complexity from tree-resolution size to tree-like Res(⊕) refutation size, which yields many new exponential lower bounds on such proofs. 
    more » « less
  5. Query-to-communication lifting theorems, which connect the query complexity of a Boolean function to the communication complexity of an associated `lifted' function obtained by composing the function with many copies of another function known as a gadget, have been instrumental in resolving many open questions in computational complexity. Several important complexity questions could be resolved if we could make substantial improvements in the input size required for lifting with the Index function, from its current near-linear size down to polylogarithmic in the number of inputs N of the original function or, ideally, constant. The near-linear size bound was shown by Lovett, Meka, Mertz, Pitassi and Zhang using a recent breakthrough improvement on the Sunflower Lemma to show that a certain graph associated with the Index function of near-linear size is a disperser. They also stated a conjecture about the Index function that is essential for further improvements in the size required for lifting with Index using current techniques. In this paper we prove the following; 1) The conjecture of Lovett et al. is false when the size of the Index gadget is logN−\omega(1). 2) Also, the Inner-Product function, which satisfies the disperser property at size O(logN), does not have this property when its size is log N−\omega(1). 3) Nonetheless, using Index gadgets of size at least 4, we prove a lifting theorem for a restricted class of communication protocols in which one of the players is limited to sending parities of its inputs. 4) Using the ideas from this lifting theorem, we derive a strong lifting theorem from decision tree size to parity decision tree size. We use this to derive a general lifting theorem in proof complexity from tree-resolution size to tree-like Res(\oplus) refutation size, which yields many new exponential lower bounds on such proofs. 
    more » « less