In a recent work, Moshkovitz [FOCS '14] presented a transformation on two-player games called ``fortification'', and gave an elementary proof of an (exponential decay) parallel repetition theorem for fortified two-player projection games. In this paper, we give an \emph{analytic reformulation} of Moshkovitz's fortification framework, which was originally cast in combinatorial terms. This reformulation allows us to expand the scope of the fortification method to new settings. First, we show \emph{any} game (not just projection games) can be fortified, and give a simple proof of parallel repetition for general fortified games. Then, we prove parallel repetition and fortification theorems for games with players sharing quantum entanglement, as well as games with more than two players. This gives a new gap amplification method for general games in the quantum and multiplayer settings, two problems which have recently received much attention. An important component of our work is a variant of the fortification transformation, called ``ordered fortification", that preserves the entangled value of a game. The original fortification of Moshkovitz does not in general preserve the entangled value of a game, and this was a barrier to extending the fortification framework to the quantum setting.
more »
« less
Hardness amplification for entangled games via anchoring
We study the parallel repetition of one-round games involving players that can use quantum entanglement. A major open question in this area is whether parallel repetition reduces the entangled value of a game at an exponential rate --- in other words, does an analogue of Raz's parallel repetition theorem hold for games with players sharing quantum entanglement? Previous results only apply to special classes of games. We introduce a class of games we call anchored. We then introduce a simple transformation on games called \emph{anchoring}, inspired in part by the Feige-Kilian transformation, that turns \emph{any} (multiplayer) game into an anchored game. Unlike the Feige-Kilian transformation, our anchoring transformation is completeness preserving. We prove an exponential-decay parallel repetition theorem for anchored games that involve any number of entangled players. We also prove a threshold version of our parallel repetition theorem for anchored games. Together, our parallel repetition theorems and anchoring transformation provide the first hardness amplification techniques for general entangled games. We give an application to the games version of the Quantum PCP Conjecture.
more »
« less
- Award ID(s):
- 1650733
- PAR ID:
- 10026355
- Date Published:
- Journal Name:
- Proceedings of the annual ACM Symposium on Theory of Computing
- ISSN:
- 0737-8017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The \emph{p-processor cup game} is a classic and widely studied scheduling problem that captures the setting in which a p-processor machine must assign tasks to processors over time in order to ensure that no individual task ever falls too far behind. The problem is formalized as a multi-round game in which two players, a filler (who assigns work to tasks) and an emptier (who schedules tasks) compete. The emptier's goal is to minimize backlog, which is the maximum amount of outstanding work for any task. Recently, Kuszmaul and Westover (ITCS, 2021) proposed the \emph{variable-processor cup game}, which considers the same problem, except that the amount of resources available to the players (i.e., the number p of processors) fluctuates between rounds of the game. They showed that this seemingly small modification fundamentally changes the dynamics of the game: whereas the optimal backlog in the fixed p-processor game is Θ(logn), independent of p, the optimal backlog in the variable-processor game is Θ(n). The latter result was only known to apply to games with \emph{exponentially many} rounds, however, and it has remained an open question what the optimal tradeoff between time and backlog is for shorter games. This paper establishes a tight trade-off curve between time and backlog in the variable-processor cup game. Importantly, we prove that for a game consisting of t rounds, the optimal backlog is Θ(n) if and only if t≥Ω(n3). Our techniques also allow for us to resolve several other open questions concerning how the variable-processor cup game behaves in beyond-worst-case-analysis settings.more » « less
-
The goal of the paper is to develop the theory of finite state mean field games with major and minor players when the state space of the game is finite. We introduce the finite player games and derive a mean field game formulation in the limit when the number of minor players tends to infinity. In this limit, we prove that the value functions of the optimization problems are viscosity solutions of PIDEs of the HJB type, and we construct the best responses for both types of players. From there, we prove existence of Nash equilibria under reasonable assumptions. Finally we prove that a form of propagation of chaos holds in the present context and use this result to prove existence of approximate Nash equilibria for the finite player games from the solutions of the mean field games. this vindicate our formulation of the mean field game problem.more » « less
-
In this paper, we investigate a certain class of tile-based pattern games through a simplified version of a recent game titled Nonads. We prove that Nonads is PSPACE-complete with a reduction from bounded 2-player constraint logic (Bounded 2CL) even when both players share the same target and there is only one type of playable tile. This has application to any grid-based pattern building game.more » « less
An official website of the United States government

