skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forgetful Forests: Data Structures for Machine Learning on Streaming Data under Concept Drift
Database and data structure research can improve machine learning performance in many ways. One way is to design better algorithms on data structures. This paper combines the use of incremental computation as well as sequential and probabilistic filtering to enable “forgetful” tree-based learning algorithms to cope with streaming data that suffers from concept drift. (Concept drift occurs when the functional mapping from input to classification changes over time). The forgetful algorithms described in this paper achieve high performance while maintaining high quality predictions on streaming data. Specifically, the algorithms are up to 24 times faster than state-of-the-art incremental algorithms with, at most, a 2% loss of accuracy, or are at least twice faster without any loss of accuracy. This makes such structures suitable for high volume streaming applications.  more » « less
Award ID(s):
1840761
PAR ID:
10422909
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Algorithms
Volume:
16
Issue:
6
ISSN:
1999-4893
Page Range / eLocation ID:
278
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Changes in data distribution of streaming data (i.e., concept drifts), constitute a central issue in online data mining. The main reason is that these changes are responsible for outdating stream learning models, reducing their predictive performance over time. A common approach adopted by real-time adaptive systems to deal with concept drifts is to employ detectors that indicate the best time for updates. However, an unrealistic assumption of most detectors is that the labels become available immediately after data arrives. In this paper, we introduce an unsupervised and model-independent concept drift detector suitable for high-speed and high-dimensional data streams in realistic scenarios with the scarcity of labels. We propose a straightforward two-dimensional representation of the data aiming faster processing for detection. We develop a simple adaptive drift detector on this visual representation that is efficient for fast streams with thousands of features and is accurate as existing costly methods that perform various statistical tests. Our method achieves better performance measured by execution time and accuracy in classification problems for different types of drifts, including abrupt, oscillating, and incremental. Experimental evaluation demonstrates the versatility of the method in several domains, including astronomy, entomology, public health, political science, and medical science. 
    more » « less
  2. Clustering streaming data has gained importance in recent years due to an expanding opportunity to discover knowledge in widely available data streams. As streams are potentially evolving and unbounded sequence of data objects, clustering algorithms capable of performing fast and incremental processing of data points are necessary. This paper presents a method of clustering high-dimensional data streams using approximate methods called streamingRPHash. streamingRPHash combines random projections with locality-sensitivity hashing to construct a high-performance clustering method. streamingRPHash is amenable to distributed processing frameworks such as Map-Reduce, and also has the benefits of constrained overall complexity growth. This paper describes streamingRPHash algorithm and its various configurations. The clustering performance of streamingRPHash is compared to several alternatives. Experimental results show that streamingRPHash has comparable clustering accuracy and substantially lower runtime and memory usage. 
    more » « less
  3. null (Ed.)
    Stream mining considers the online arrival of examples at high speed and the possibility of changes in its descriptive features or class definitions compared with past knowledge (i.e., concept drifts). The fast detection of drifts is essential to keep the predictive model updated and stable in changing environments. For many applications, such as those related to smart sensors, the high number of features is an additional challenge in terms of memory and time for stream processing. This paper presents an unsupervised and model-independent concept drift detector suitable for high-speed and high-dimensional data streams. We propose a straightforward two-dimensional data representation that allows the faster processing of datasets with a large number of examples and dimensions. We developed an adaptive drift detector on this visual representation that is efficient for fast streams with thousands of features and is accurate as existing costly methods that perform various statistical tests considering each feature individually. Our method achieves better performance measured by execution time and accuracy in classification problems for different types of drifts. The experimental evaluation considering synthetic and real data demonstrates the method’s versatility in several domains, including entomology, medicine, and transportation systems. 
    more » « less
  4. When an agent acquires new information, ideally it would immediately be capable of using that information to understand its environment. This is not possible using conventional deep neural networks, which suffer from catastrophic forgetting when they are incrementally updated, with new knowledge overwriting established representations. A variety of approaches have been developed that attempt to mitigate catastrophic forgetting in the incremental batch learning scenario, where a model learns from a series of large collections of labeled samples. However, in this setting, inference is only possible after a batch has been accumulated, which prohibits many applications. An alternative paradigm is online learning in a single pass through the training dataset on a resource constrained budget, which is known as streaming learning. Streaming learning has been much less studied in the deep learning community. In streaming learning, an agent learns instances one-by-one and can be tested at any time, rather than only after learning a large batch. Here, we revisit streaming linear discriminant analysis, which has been widely used in the data mining research community. By combining streaming linear discriminant analysis with deep learning, we are able to outperform both incremental batch learning and streaming learning algorithms on both ImageNet ILSVRC-2012 and CORe50, a dataset that involves learning to classify from temporally ordered samples. 
    more » « less
  5. Lu, Xin; Wang, Wei; Wu, Dehao; Li, Xiaoxia (Ed.)
    In the rapidly evolving landscape of scientific semiconductor laboratories (commonly known as, cleanrooms), integrated with Internet of Things (IoT) technology and Cyber-Physical Systems (CPSs), several factors including operational changes, sensor aging, software updates and the introduction of new processes or equipment can lead to dynamic and non-stationary data distributions in evolving data streams. This phenomenon, known as concept drift, poses a substantial challenge for traditional data-driven digital twin static machine learning (ML) models for anomaly detection and classification. Subsequently, the drift in normal and anomalous data distributions over time causes the model performance to decay, resulting in high false alarm rates and missed anomalies. To address this issue, we present TWIN-ADAPT, a continuous learning model within a digital twin framework designed to dynamically update and optimize its anomaly classification algorithm in response to changing data conditions. This model is evaluated against state-of-the-art concept drift adaptation models and tested under simulated drift scenarios using diverse noise distributions to mimic real-world distribution shift in anomalies. TWIN-ADAPT is applied to three critical CPS datasets of Smart Manufacturing Labs (also known as “Cleanrooms”): Fumehood, Lithography Unit and Vacuum Pump. The evaluation results demonstrate that TWIN-ADAPT’s continual learning model for optimized and adaptive anomaly classification achieves a high accuracy and F1 score of 96.97% and 0.97, respectively, on the Fumehood CPS dataset, showing an average performance improvement of 0.57% over the offline model. For the Lithography and Vacuum Pump datasets, TWIN-ADAPT achieves an average accuracy of 69.26% and 71.92%, respectively, with performance improvements of 75.60% and 10.42% over the offline model. These significant improvements highlight the efficacy of TWIN-ADAPT’s adaptive capabilities. Additionally, TWIN-ADAPT shows a very competitive performance when compared with other benchmark drift adaptation algorithms. This performance demonstrates TWIN-ADAPT’s robustness across different modalities and datasets, confirming its suitability for any IoT-driven CPS framework managing diverse data distributions in real time streams. Its adaptability and effectiveness make it a versatile tool for dynamic industrial settings. 
    more » « less