We propose a new nonconvex framework for blind multiple signal demixing and recovery. The proposed Riemann geometric approach extends the well known constant modulus algorithm to facilitate grant-free wireless access. For multiple signal demixing and recovery, we formulate the problem as non-convex problem optimization problem with signal orthogonality constraint in the form of Riemannian Orthogonal CMA(ROCMA). Unlike traditional stochastic gradient solutions that require large data samples, parameter tuning, and careful initialization, we leverage Riemannian geometry and transform the orthogonality requirement of recovered signals into a Riemannian manifold optimization. Our solution demonstrates full recovery of multiple access signals without large data sample size or special initialization with high probability of success.
more »
« less
Riemannian Constrained Policy Optimization via Geometric Stability Certificates
Abstract—In this paper, we consider policy optimization over the Riemannian submanifolds of stabilizing controllers arising from constrained Linear Quadratic Regulators (LQR), including output feedback and structured synthesis. In this direction, we provide a Riemannian Newton-type algorithm that enjoys local convergence guarantees and exploits the inherent geometry of the problem. Instead of relying on the exponential mapping or a global retraction, the proposed algorithm revolves around the developed stability certificate and the constraint structure, utilizing the intrinsic geometry of the synthesis problem. We then showcase the utility of the proposed algorithm through numerical examples.
more »
« less
- Award ID(s):
- 2149470
- PAR ID:
- 10422991
- Date Published:
- Journal Name:
- IEEE Conference on Decision and Control
- Page Range / eLocation ID:
- 1472 to 1478
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Euclidean distance geometry (EDG) problem is a crucial machine learning task that appears in many applications. Utilizing the pairwise Euclidean distance information of a given point set, EDG reconstructs the configuration of the point system. When only partial distance information is available, matrix completion techniques can be incorporated to fill in the missing pairwise distances. In this paper, we propose a novel dual basis Riemannian gradient descent algorithm, coined RieEDG, for the EDG completion problem. The numerical experiments verify the effectiveness of the proposed algorithm. In particular, we show that RieEDG can precisely reconstruct various datasets consisting of 2- and 3-dimensional points by accessing a small fraction of pairwise distance information.more » « less
-
The Euclidean distance geometry (EDG) problem is a crucial machine learning task that appears in many applications. Utilizing the pairwise Euclidean distance information of a given point set, EDG reconstructs the configuration of the point system. When only partial distance information is available, matrix completion techniques can be incorporated to fill in the missing pairwise distances. In this paper, we propose a novel dual basis Riemannian gradient descent algorithm, coined RieEDG, for the EDG completion problem. The numerical experiments verify the effectiveness of the proposed algorithm. In particular, we show that RieEDG can precisely reconstruct various datasets consisting of 2- and 3-dimensional points by accessing a small fraction of pairwise distance information.more » « less
-
In this article, we study linearly constrained policy optimization over the manifold of Schur stabilizing controllers, equipped with a Riemannian metric that emerges naturally in the context of optimal control problems. We provide extrinsic analysis of a generic constrained smooth cost function that subsequently facilitates subsuming any such constrained problem into this framework. By studying the second-order geometry of this manifold, we provide a Newton-type algorithm that does not rely on the exponential mapping nor a retraction, while ensuring local convergence guarantees. The algorithm hinges instead upon the developed stability certificate and the linear structure of the constraints. We then apply our methodology to two well-known constrained optimal control problems. Finally, several numerical examples showcase the performance of the proposed algorithm.more » « less
-
In this paper, we develop a distributed consensus algorithm for agents whose states evolve on a manifold. This algorithm is complementary to traditional consensus, predominantly developed for systems with dynamics on vector spaces. We provide theoretical convergence guarantees for the proposed manifold consensus provided that agents are initialized within a geodesically convex (g-convex) set. This required condition on initialization is not restrictive as g-convex sets may be comparatively “large” for relevant Riemannian manifolds. Our approach to manifold consensus builds upon the notion of Riemannian Center of Mass (RCM) and the intrinsic structure of the manifold to avoid projections in the ambient space. We first show that on a g-convex ball, all states coincide if and only if each agent’s state is the RCM of its neighbors’ states. This observation facilitates our convergence guarantee to the consensus submanifold. Finally, we provide simulation results that exemplify the linear convergence rate of the proposed algorithm and illustrates its statistical properties over randomly generated problem instances.more » « less
An official website of the United States government

