skip to main content


This content will become publicly available on June 9, 2024

Title: Real-time Technosignature Strategies with SN 2023ixf
Abstract Several technosignature techniques focus on historic events such as SN 1987A as the basis to search for coordinated signal broadcasts from extraterrestrial agents. The recently discovered SN 2023ixf in the spiral galaxy M101 is the nearest Type II supernova in over a decade, and will serve as an important benchmark event. Here we review the potential for SN 2023ixf to advance ongoing techonsignature searches, particularly signal-synchronization techniques such as the “SETI Ellipsoid” that identifies over time stars that could transmit signals after observing a supernovae event. We find that more than 100 stars within 100 pc are already close to intersecting this SETI Ellipsoid, providing numerous targets for real-time monitoring within ∼3° of SN 2023ixf. We are commencing a radio technosignature monitoring campaign of these targets with the Allen Telescope Array and the Green Bank Telescope.  more » « less
Award ID(s):
1950897
NSF-PAR ID:
10423087
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Research Notes of the AAS
Volume:
7
Issue:
6
ISSN:
2515-5172
Page Range / eLocation ID:
120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The SETI Ellipsoid is a strategy for technosignature candidate selection that assumes that extraterrestrial civilizations who have observed a galactic-scale event—such as supernova 1987A—may use it as a Schelling point to broadcast synchronized signals indicating their presence. Continuous wide-field surveys of the sky offer a powerful new opportunity to look for these signals, compensating for the uncertainty in their estimated time of arrival. We explore sources in the TESS continuous viewing zone, which corresponds to 5% of all TESS data, observed during the first 3 yr of the mission. Using improved 3D locations for stars from Gaia Early Data Release 3, we identified 32 SN 1987A SETI Ellipsoid targets in the TESS continuous viewing zone with uncertainties better than 0.5 lt-yr. We examined the TESS light curves of these stars during the Ellipsoid crossing event and found no anomalous signatures. We discuss ways to expand this methodology to other surveys, more targets, and different potential signal types.

     
    more » « less
  2. Abstract

    Spatiotemporal techniques for signal coordination with actively transmitting extraterrestrial civilizations, without the need for prior communication, can constrain technosignature searches to a significantly smaller coordinate space. With the variable star catalog from Gaia Data Release 3, we explore two related signaling strategies: the SETI Ellipsoid, and that proposed by Seto, which are both based on the synchronization of transmissions with a conspicuous astrophysical event. This data set contains more than 10 million variable star candidates with light curves from the first three years of Gaia’s operational phase, between 2014 and 2017. Using four different historical supernovae as source events, we find that less than 0.01% of stars in the sample have crossing times, the times at which we would expect to receive synchronized signals on Earth, within the date range of available Gaia observations. For these stars, we present a framework for technosignature analysis that searches for modulations in the variability parameters by splitting the stellar light curve at the crossing time.

     
    more » « less
  3. Abstract The aim of the search for extraterrestrial intelligence (SETI) is to find technologically capable life beyond Earth through their technosignatures. On 2019 April 29, the Breakthrough Listen SETI project observed Proxima Centauri with the Parkes ‘Murriyang’ radio telescope. These data contained a narrowband signal with characteristics broadly consistent with a technosignature near 982 MHz (‘blc1’). Here we present a procedure for the analysis of potential technosignatures, in the context of the ubiquity of human-generated radio interference, which we apply to blc1. Using this procedure, we find that blc1 is not an extraterrestrial technosignature, but rather an electronically drifting intermodulation product of local, time-varying interferers aligned with the observing cadence. We find dozens of instances of radio interference with similar morphologies to blc1 at frequencies harmonically related to common clock oscillators. These complex intermodulation products highlight the necessity for detailed follow-up of any signal of interest using a procedure such as the one outlined in this work. 
    more » « less
  4. Abstract

    Supernova (SN) 2023ixf was discovered on 2023 May 19. The host galaxy, M101, was observed by the Hobby–Eberly Telescope Dark Energy Experiment collaboration over the period 2020 April 30–2020 July 10, using the Visible Integral-field Replicable Unit Spectrograph (3470 ≲λ≲ 5540 Å) on the 10 m Hobby–Eberly Telescope. The fiber filling factor within ±30″ of SN 2023ixf is 80% with a spatial resolution of 1″. Ther< 5.″5 surroundings are 100% covered. This allows us to analyze the spatially resolved preexplosion local environments of SN 2023ixf with nebular emission lines. The two-dimensional maps of the extinction and the star formation rate (SFR) surface density (ΣSFR) show weak increasing trends in the radial distributions within ther< 5.″5 regions, suggesting lower values of extinction and SFR in the vicinity of the progenitor of SN 2023ixf. The median extinction and that of the surface density of SFR withinr< 3″ areE(BV) = 0.06 ± 0.14, andΣSFR=105.44±0.66Myr1arcsec2.There is no significant change in extinction before and after the explosion. The gas metallicity does not change significantly with the separation from SN 2023ixf. The metal-rich branch of theR23calculations indicates that the gas metallicity around SN 2023ixf is similar to the solar metallicity (∼Z). The archival deep images from the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) show a clear detection of the progenitor of SN 2023ixf in thezband at 22.778 ± 0.063 mag, but nondetections in the remaining four bands of CFHTLS (u,g,r,i). The results suggest a massive progenitor of ≈22M.

     
    more » « less
  5. Abstract

    The Breakthrough Listen Initiative is conducting a program using multiple telescopes around the world to search for “technosignatures”: artificial transmitters of extraterrestrial origin from beyond our solar system. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) Collaboration joined this program in 2018 and provides the capability to search for one particular technosignature: optical pulses of a few nanoseconds in duration detectable over interstellar distances. We report here on the analysis and results of dedicated VERITAS observations of Breakthrough Listen targets conducted in 2019 and 2020 and of archival VERITAS data collected since 2012. Thirty hours of dedicated observations of 136 targets and 249 archival observations of 140 targets were analyzed and did not reveal any signals consistent with a technosignature. The results are used to place limits on the fraction of stars hosting transmitting civilizations. We also discuss the minimum pulse sensitivity of our observations and present VERITAS observations of CALIOP: a space-based pulsed laser on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. The detection of these pulses with VERITAS, using the analysis techniques developed for our technosignature search, allows a test of our analysis efficiency and serves as an important proof of principle.

     
    more » « less