skip to main content


Title: Identifying and sharing per-and polyfluoroalkyl substances hot-spot areas and exposures in drinking water
Abstract

Exposure to per- and polyfluoroalkyl substances (PFAS) in drinking water is widely recognized as a public health concern. Decision-makers who are responsible for managing PFAS drinking water risks lack the tools to acquire the information they need. In response to this need, we provide a detailed description of a Kentucky dataset that allows decision-makers to visualize potential hot-spot areas and evaluate drinking water systems that may be susceptible to PFAS contamination. The dataset includes information extracted from publicly available sources to create five different maps in ArcGIS Online and highlights potential sources of PFAS contamination in the environment in relation to drinking water systems. As datasets of PFAS drinking water sampling continue to grow as part of evolving regulatory requirements, we used this Kentucky dataset as an example to promote the reuse of this dataset and others like it. We incorporated the FAIR (Findable, Accessible, Interoperable, and Reusable) principles by creating a Figshare item that includes all data and associated metadata with these five ArcGIS maps.

 
more » « less
Award ID(s):
2020026
NSF-PAR ID:
10423127
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
10
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As health‐based drinking water standards for per‐ and polyfluorinated alkyl substances (PFAS) continue to evolve, public health and environmental protection decision‐makers must assess exposure risks associated with all public drinking water systems in the United States (US). Unfortunately, current knowledge regarding the presence of PFAS in environmental systems is limited. In this study, a screening approach was established to: (1) identify and direct attention toward potential PFAS hot spots in drinking water sources, (2) prioritize sampling locations, and (3) provide insights regarding the potential PFAS sources that contaminate groundwater and surface water. Our approach incorporates geospatial data from public sources, including the US Environmental Protection Agency's Toxic Release Inventory, to identify locations where PFAS may be present in drinking water sources. An indicator factor (also known as “risk factor”) was developed as a function of distance between potential past and/or present PFAS users (e.g., military bases, industrial sites, and airports) and the public water system, which generates a heat map that visualizes potential exposure risks. A binomial logistic regression model indicates whether PFAS are likely to be detected in public water systems. The results obtained using the developed screening approach aligned well (with a 76% overall model accuracy) with PFAS sampling and chemical analysis data from 81 public drinking water systems in the state of Kentucky. This study proposes this screening model as an effective decision aid to assist key decision‐makers in identifying and prioritizing sampling locations for potential PFAS exposure risks in the public drinking water sources in their service areas.Integr Environ Assess Manag2023;19:163–174. © 2022 SETAC

     
    more » « less
  2. null (Ed.)
    Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic organic substances with diverse structures, properties, uses, bioaccumulation potentials and toxicities. Despite this high diversity, all PFAS are alike in that they contain perfluoroalkyl moieties that are extremely resistant to environmental and metabolic degradation. The vast majority of PFAS are therefore either non-degradable or transform ultimately into stable terminal transformation products (which are still PFAS). Under the European chemicals regulation this classifies PFAS as very persistent substances (vP). We argue that this high persistence is sufficient concern for their management as a chemical class, and for all “non-essential” uses of PFAS to be phased out. The continual release of highly persistent PFAS will result in increasing concentrations and increasing probabilities of the occurrence of known and unknown effects. Once adverse effects are identified, the exposure and associated effects will not be easily reversible. Reversing PFAS contamination will be technically challenging, energy intensive, and costly for society, as is evident in the efforts to remove PFAS from contaminated land and drinking water sources. 
    more » « less
  3. Abstract Article Impact Statement

    Electrochemical treatment is capable of destroying per‐ and polyfluoroalkyl substances, but future research should reflect more realistic drinking water sources.

     
    more » « less
  4. Abstract Objectives

    The Galápagos provides an important setting to investigate the health impacts of a new drinking water treatment plant (DWTP) in a limited resource environment. We examine how household perceptions and practices affect the relationship between water quality and infections before and after DWTP.

    Methods

    Ethnographic data and self‐reported infections were collected from 121 mothers and 168 children ages 2 to 10 from Isla San Cristóbal. Household tap water samples were tested for levels of fecal contamination. Community level infection rates were estimated using discharge records from the Ministry of Public Health. The effects of the new DWTP and fecal contamination levels on infections were tested using logistic and Poisson models.

    Results

    Perceptions of water quality and household practices influenced exposures to contaminated tap water. We found minimal change in drinking water sources with 85% of mothers sampled before the DWTP and 83% sampled after using bottled water, while >85% from the pooled sample used tap water for cooking and hygiene practices. The DWTP opening was associated with lower odds of fecal contamination in tap water, reported urinary infections, and community level rates of urinary and gastrointestinal infections. The household practice of recently washing the cistern contributed to higher contamination levels after the DWTP opened.

    Conclusions

    To ensure access to clean water, public health works need to consider how household perceptions and practices influence tap water use and quality, in addition to infrastructure improvements. Exposures to contaminated tap water contribute to the burden of infectious disease in environments with inadequate water infrastructure.

     
    more » « less
  5. Abstract

    We present a draft Minimum Information About Geospatial Information System (MIAGIS) standard for facilitating public deposition of geospatial information system (GIS) datasets that follows the FAIR (Findable, Accessible, Interoperable and Reusable) principles. The draft MIAGIS standard includes a deposition directory structure and a minimum javascript object notation (JSON) metadata formatted file that is designed to capture critical metadata describing GIS layers and maps as well as their sources of data and methods of generation. The associated miagis Python package facilitates the creation of this MIAGIS metadata file and directly supports metadata extraction from both Esri JSON and GEOJSON GIS data formats plus options for extraction from user-specified JSON formats. We also demonstrate their use in crafting two example depositions of ArcGIS generated maps. We hope this draft MIAGIS standard along with the supporting miagis Python package will assist in establishing a GIS standards group that will develop the draft into a full standard for the wider GIS community as well as a future public repository for GIS datasets.

     
    more » « less