skip to main content


Title: Detection and differentiation of per- and polyfluoroalkyl substances (PFAS) in water using a fluorescent imprint-and-report sensor array
Widespread industrial use of per- and polyfluoroalkyl substances (PFAS) as surfactants has led to global contamination of water sources with these persistent, highly stable chemicals. As a result, humans and wildlife are regularly exposed to PFAS, which have been shown to bioaccumulate and cause adverse health effects. Methods for detecting PFAS in water are currently limited and primarily utilize mass spectrometry (MS), which is time-consuming and requires expensive instrumentation. Thus, new methods are needed to rapidly and reliably assess the pollution level of water sources. While some fluorescent PFAS sensors exist, they typically function in high nanomolar or micromolar concentration ranges and focus on sensing only 1–2 individual PFAS. Our work aims to address this problem by developing a fluorescent sensor for both individual PFAS, as well as complex PFAS mixtures, and demonstrate its functionality in tap water samples. Here we show that dynamic combinatorial libraries (DCLs) with simple building blocks can be templated with a fluorophore and subsequently used as sensors to form an array that differentially detects each PFAS species and various mixtures thereof. Our method is a high-throughput analysis technique that allows many samples to be analyzed simultaneously with a plate reader. This is one of the first examples of a fluorescent PFAS sensor array that functions at low nanomolar concentrations, and herein we report its use for the rapid detection of PFAS contamination in water.  more » « less
Award ID(s):
2107685
NSF-PAR ID:
10451876
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Science
Volume:
14
Issue:
4
ISSN:
2041-6520
Page Range / eLocation ID:
928 to 936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metal cations are potent environmental pollutants that negatively impact human health and the environment. Despite advancements in sensor design, the simultaneous detection and discrimination of multiple heavy metals at sub‐nanomolar concentrations in complex analytical matrices remain a major technological challenge. Here, the design, synthesis, and analytical performance of three highly emissive conjugated polyelectrolytes (CPEs) functionalized with strong iminodiacetate and iminodipropionate metal chelates that operate in challenging environmental samples such as seawater are demonstrated. When coupled with array‐based sensing methods, these polymeric sensors discriminate among nine divalent metal cations (CuII, CoII, NiII, MnII, FeII, ZnII, CdII, HgII, and PbII). The unusually high and robust luminescence of these CPEs enables unprecedented sensitivity at picomolar concentrations in water. Unlike previous array‐based sensors for heavy metals using CPEs, the incorporation of distinct π‐spacer units within the polymer backbone affords more pronounced differences in each polymer's spectroscopic behavior upon interaction with each metal, ultimately producing better analytical information and improved differentiation. To demonstrate the environmental and biological utility, a simple two‐component sensing array is showcased that can differentiate nine metal cation species down to 500 × 10−12 min aqueous media and to 100 × 10−9 min seawater samples collected from the Gulf of Mexico.

     
    more » « less
  2. Abstract

    Trimethylamine N‐oxide (TMAO) is produced in the gut via metabolism of dietary betaine, choline, and carnitine, and elevated TMAO in plasma is associated with adverse health effects, including cardiovascular events. Currently, we lack high throughput methods for sensing these metabolites and detecting high TMAO. Thus, we have adapted our previously described “imprint‐and‐report” fluorescent sensing method using dynamic combinatorial libraries (DCLs) to create a sensor array for these four metabolites that functions at physiologically relevant concentrations. Templation of DCLs with dye and subsequent addition of analytes generates a fluorescent fingerprint for each metabolite and allows for differentiation via principal component analysis (PCA). Furthermore, we demonstrate that this system can be used to characterize mixtures of the metabolites in both buffer and human plasma samples. Using three to six DCLs, we can distinguish between plasma samples with healthy and elevated levels of TMAO.

     
    more » « less
  3. Abstract

    Trimethylamine N‐oxide (TMAO) is produced in the gut via metabolism of dietary betaine, choline, and carnitine, and elevated TMAO in plasma is associated with adverse health effects, including cardiovascular events. Currently, we lack high throughput methods for sensing these metabolites and detecting high TMAO. Thus, we have adapted our previously described “imprint‐and‐report” fluorescent sensing method using dynamic combinatorial libraries (DCLs) to create a sensor array for these four metabolites that functions at physiologically relevant concentrations. Templation of DCLs with dye and subsequent addition of analytes generates a fluorescent fingerprint for each metabolite and allows for differentiation via principal component analysis (PCA). Furthermore, we demonstrate that this system can be used to characterize mixtures of the metabolites in both buffer and human plasma samples. Using three to six DCLs, we can distinguish between plasma samples with healthy and elevated levels of TMAO.

     
    more » « less
  4. Abstract

    Well defined detection and analysis of nanoparticle‐sized samples such as extracellular vesicles or viruses may be important for potential disease diagnostics. However, using conventional flow‐cytometry optical methods to evaluate such small particles is quite challenging. The reason is that the particle is smaller than the diffraction limit, making detection difficult. An alternative approach is fluorescence detection via conjugated fluorochromes attached to the nanoparticles; the challenge in this case is the limitation imposed upon detection of a very small number of emitted photons buried in high background photon counts. Emitted fluorescence is described by the well‐known equation kf = σa I Q, which describes the emitted fluorescence rate (kf) (photons/s) as the multiplication of molecular absorption cross section(σa), excitation intensity (I), and quantum yield (Q). In addition, the excitation rate is equal to 1/t, which is the inverse of the lifetime of several ns representing the most typical conjugated fluorescent molecules used in flow cytometry. We recently developed a sub‐ns photon sensor that is faster than most fluorescence lifetimes, since sub‐ns speed is a critically important parameter for the separation of individual emitted photons. Based on our observation of fluorescence and background levels on typical commercial flow cytometers it is evident that a significant component of the background is induced by water‐molecular vibrations. Therefore, understanding what constitutes all the components that contribute to the signals we measure in flow cytometry would help in defining what we currently call “background signals.” We attempted to define a theoretical model to try to unravel these issues. This model was based on use of a reflective dry surface in the absence of water molecules. Our objective was to determine if it is possible to minimize background and enhance signal, and to provide valuable information on the contributing components of the signals collected. In order to test this model, we tested a single dried particle 50 nm in diameter on a reflective surface with minimum background. While this is clearly not a standard biological system, our results suggest that this quantum approach closely follows established photon base theory. Our goal was to define the parameters for practical nanoparticle‐fluorescence analysis while enhancing our knowledge of the contribution of background properties.

     
    more » « less
  5. Although most manufacturers stopped using long-chain per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), short-chain PFASs are still widely employed. Short-chain PFASs are less known in terms of toxicity and have different adsorption behavior from long-chain PFASs. Previous studies have shown electrostatic interaction with the adsorbent to be the dominant mechanism for the removal of short-chain PFASs. In this study, we designed a high charge density cationic quaternized nanocellulose (QNC) to enhance the removal of both short- and long-chain PFASs from contaminated water. Systematic batch adsorption tests were conducted using the QNC adsorbent to compare its efficiency against PFASs with varying chain lengths and functional groups. From the kinetic study, PFBA (perfluorobutanoic acid), PFBS (perfluorobutanesulfonic acid) and PFOS showed rapid adsorption rates, which reached near equilibrium values (>95% of removal) between 1 min to 15 min, while PFOA required a relatively longer equilibration time of 2 h (it obtained 90% of removal within 15 min). According to the isotherm results, the maximum adsorption capacity ( Q m ) of the QNC adsorbent exhibited the following trend: PFOS ( Q m = 559 mg g −1 or 1.12 mmol g −1 ) > PFOA ( Q m = 405 mg g −1 or 0.98 mmol g −1 ) > PFBS ( Q m = 319 mg g −1 or 1.06 mmol g −1 ) > PFBA ( Q m = 121 mg g −1 or 0.57 mmol g −1 ). This adsorption order generally matches the hydrophobicity trend among four PFASs associated with both PFAS chain length and functional group. In competitive studies, pre-adsorbed short-chain PFASs were quickly desorbed by long-chain PFASs, suggesting that the hydrophobicity of the molecule played an important role in the adsorption process on to QNC. Finally, the developed QNC adsorbent was tested to treat PFAS-contaminated groundwater, which showed excellent removal efficiency (>95%) for long-chain PFASs (C7–C9) even at a low adsorbent dose of 32 mg L −1 . However, short-chain PFASs ( i.e. , PFBA and perfluoropentanoic acid (PFPeA)) were poorly removed by the QNC adsorbent (0% and 10% removal, respectively) due to competing constituents in the groundwater matrix. This was further confirmed by controlled experiments that revealed a drop in the performance of QNC to remove short-chain PFASs at elevated ionic strength (NaCl), but not for long-chain PFASs, likely due to charge neutralization of the anionic functional group of PFASs by inorganic cations. Overall, the QNC adsorbent featured improved PFAS adsorption capacity at almost two-fold of PFAS removal by granular activated carbons, especially for short-chain PFASs. We believe, QNC can complement the use of common treatment methods such as activated carbon or ionic exchange resin to remove a wide range of PFAS pollutants, heading towards the complete remediation of PFAS contamination. 
    more » « less