skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Frog hatchlings use early environmental cues to produce an anticipatory resource-use phenotype
Developmental plasticity can occur at any life stage, but plasticity that acts early in development may give individuals a competitive edge later in life. Here, we asked if early (pre-feeding) exposure to a nutrient-rich resource impacts hatchling morphology in Mexican spadefoot toad tadpoles, Spea multiplicata . A distinctive carnivore morph can be induced when tadpoles eat live fairy shrimp. We investigated whether cues from shrimp––detected before individuals are capable of feeding––alter hatchling morphology such that individuals could potentially take advantage of this nutritious resource once they begin feeding. We found that hatchlings with early developmental exposure to shrimp were larger and had larger jaw muscles––traits that, at later stages, increase a tadpole's competitive ability for shrimp. These results suggest that early developmental stages can assess and respond to environmental cues by producing resource-use phenotypes appropriate for future conditions. Such anticipatory plasticity may be an important but understudied form of developmental plasticity.  more » « less
Award ID(s):
1753865
PAR ID:
10423678
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biology Letters
Volume:
19
Issue:
3
ISSN:
1744-957X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Development can play a critical role in how organisms respond to changes in the environment. Tolerance to environmental challenges can vary during ontogeny, with individual- and population-level impacts that are associated with the timing of exposure relative to the timing of vulnerability. In addition, the life history consequences of different stressors can vary with the timing of exposure to stress. Salinization of freshwater ecosystems is an emerging environmental concern, and habitat salinity can change rapidly due, for example, to storm surge, runoff of road deicing salts, and rainfall. Elevated salinity can increase the demands of osmoregulation in freshwater organisms, and amphibians are particularly at risk due to their permeable skin and, in many species, semi-aquatic life cycle. In three experiments, we manipulated timing and duration of exposure to elevated salinity during larval development of southern toad (Anaxyrus terrestris) tadpoles and examined effects on survival, larval growth, and timing of and size at metamorphosis. Survival was reduced only for tadpoles exposed to elevated salinity early in development, suggesting an increase in tolerance as development proceeds; however, we found no evidence of acclimation to elevated salinity. Two forms of developmental plasticity may help to ameliorate costs of transient salinity exposure. With early salinity exposure, the return to freshwater was accompanied by a period of rapid compensatory growth, and metamorphosis ultimately occurred at a similar age and size as freshwater controls. By contrast, salinity exposure later in development led to earlier metamorphosis at reduced size, indicating an acceleration of metamorphosis as a mechanism to escape salinity stress. Thus, the consequences of transient salinity exposure were complex and were mediated by developmental state. Salinity stress experienced early in development resulted in acute costs but little long-lasting effect on survivors, while exposures later in development resulted in sublethal effects that could influence success in subsequent life stages. Overall, our results suggest that elevated salinity is more likely to affect southern toad larvae when experienced early during larval development, but even brief sublethal exposure later in development can alter life history in ways that may impact fitness. 
    more » « less
  2. Developmental plasticity is the capacity of a single genotype to express multiple phenotypes in response to different early‐life environments. Such responses are defined by reaction norms, which may vary among individuals or populations. Variation in developmental reaction norms allows natural selection to operate on plasticity and is rarely examined in vertebrates. We quantified variation in embryonic developmental plasticity within and between populations using the brown anole lizard. We captured lizards from two islands in the Matanzas River (Florida, USA) and incubated their eggs under one of two multivariate treatments that mimicked the temperature, moisture and substrates of nest sites in either a shaded or open habitat. We measured hatchling morphology, performance, and physiology to quantify variation in family‐level reaction norms. We observed evidence of family‐level variation in reaction norms for morphology but not for performance or physiology, indicating an opportunity for natural selection to shape plasticity in hatchling body size. Overall, the results indicate that multiple abiotic conditions in natural nests combine to increase or reduce phenotypic variation, and that family‐level variation in reaction norms provides a potential for natural selection to shape plasticity. 
    more » « less
  3. Intraspecific competition has long been considered a key driver of evolutionary diversification, but whether it can also promote evolutionary innovation is less clear. We examined the interplay between competition and phenotypic plasticity in fueling the origins of a novel, complex phenotype––a distinctive carnivore morph found in spadefoot toad tadpoles (genus Spea) that specializes on fairy shrimp. We specifically sought to explore the possible origins of this phenotype by providing shrimp to Scaphiopus holbrookii tadpoles (the sister genus to Spea that does not produce carnivores) while subjecting them to competition for their standard diet of detritus. Previous research had shown that this species will eat shrimp when detritus is limited, and that these shrimp-fed individuals produce features that are redolent of a rudimentary Spea carnivore. In this study, we found that: 1) behavioral and morphological plasticity enabled some individuals to expand their diet to include shrimp; 2) there was heritable variation in this plasticity; and 3) individuals received a growth and development benefit by eating shrimp. Thus, novel resource use can arise via plasticity as an adaptive response to intraspecific competition. More generally, our results show how competition and plasticity may interact to pave the way for the evolution of complex, novel phenotypes, such as the distinctive carnivore morph in present-day Spea. 
    more » « less
  4. Abstract Developmental plasticity can allow the exploitation of alternative diets. While such flexibility during early life is often adaptive, it can leave a legacy in later life that alters the overall health and fitness of an individual. Species of the spadefoot toad genusSpeaare uniquely poised to address such carryover effects because their larvae can consume drastically different diets: their ancestral diet of detritus or a derived shrimp diet. Here, we useSpeabombifronsto assess the effects of developmental plasticity in response to larval diet type and nutritional stress on juvenile behaviors and stress axis reactivity. We find that, in an open‐field assay, juveniles fed shrimp as larvae have longer latencies to move, avoid prey items more often, and have poorer prey‐capture abilities. While juveniles fed shrimp as larvae are more exploratory, this effect disappears if they also experienced a temporary nutritional stressor during early life. The larval shrimp diet additionally impairs juvenile jumping performance. Finally, larvae that were fed shrimp under normal nutritional conditions produce juveniles with higher overall glucocorticoid levels, and larvae that were fed shrimp and experienced a temporary nutritional stressor produce juveniles with higher stress‐induced glucocorticoid levels. Thus, while it has been demonstrated that consuming the novel, alternative diet can be adaptive for larvae in nature, doing so has marked effects on juvenile phenotypes that may recalibrate an individual's overall fitness. Given that organisms often utilize diverse diets in nature, our study underscores the importance of considering how diet type interacts with early‐life nutritional adversity to influence subsequent life stages. 
    more » « less
  5. Abstract The mechanisms connecting environmental conditions to plasticity in biological aging trajectories are fundamental to understanding individual variation in functional traits and life history. Recent findings suggest that telomere biology is especially dynamic during early life stages and has long‐term consequences for subsequent reproduction and survival. However, our current understanding is mostly derived from studies investigating ecological and anthropogenic factors separately, leaving the effects of complex environmental interactions unresolved. American alligators (Alligator mississippiensis) are long‐lived apex predators that rely on incubation temperature during a discrete period during development and endocrine cues to determine sex, making them especially vulnerable to current climatic variability and exposure to anthropogenic contaminants interfering with hormone function. Here, we combine field studies with a factorial design to understand how the developmental environment, along with intrinsic biological variation contribute to persistent telomere variation. We found that exposure to a common endocrine disrupting contaminant, DDE, affects telomere length, but that the directionality is highly dependent upon incubation temperature. Variation in hatchling growth, underlies a strong clutch effect. We also assess concentrations of a panel of glucocorticoid hormones and find that contaminant exposure elicits an increase in circulating glucocorticoids. Consistent with emerging evidence linking stress and aging trajectories, GC levels also appear to trend with shorter telomere length. Thus, we add support for a mechanistic link between contaminants and glucocorticoid signalling, which interacts with ecological aspects of the developmental environment to alter telomere dynamics. 
    more » « less