Abstract Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon. Significance StatementWe want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future. 
                        more » 
                        « less   
                    
                            
                            Dipole Response of Millennial Variability in Tropical South American Precipitation and δ18Op during the Last Deglaciation. Part II: δ18Op Response
                        
                    
    
            Abstract Understanding the hydroclimate representations of precipitationδ18O (δ18Op) in tropical South America (TSA) is crucial for climate reconstruction from available speleothem caves. Our preceding study (Part I) highlights a heterogeneous response in millennial hydroclimate over the TSA during the last deglaciation (20–11 ka before present), characterized by a northwest–southeast (NW–SE) dipole in both rainfall andδ18Op, with opposite signs between central-western Amazon and eastern Brazil. Mechanisms of suchδ18Opdipole response are further investigated in this study with the aid of moisture tagging simulations. In response to increased meltwater discharge, the intertropical convergence zone (ITCZ) migrates southward, causing a moisture source location shift and depleting the isotopic value of the vapor transported into eastern Brazil, which almost entirely contributes to theδ18Opdepletion in eastern Brazil (SE pole). In contrast, the moisture source location change and local condensation change (due to the lowering convergence level and increased rain reevaporation in unsaturated subcloud layers) contribute nearly equally to theδ18Openrichment in the central-western Amazon (NW pole). Therefore, although a clear inverse relationship betweenδ18Opand rainfall in both dipole regions seems to support the “amount effect,” we argue that the local rainfall amount only partially interprets the millennialδ18Opchange in the central-western Amazon, whileδ18Opdoes not document local rainfall change in eastern Brazil. Thus, the paleoclimate community should be cautious when usingδ18Opas a proxy for past local precipitation in the TSA region. Finally, we discuss the discrepancy between the model and speleothem proxies on capturing the millennialδ18Opdipole response and pose a challenge in reconciling the discrepancy. Significance StatementWe want to comprehensively understand the hydroclimate footprints ofδ18Opand the mechanisms of the millennial variability ofδ18Opover tropical South America with the help of water tagging experiments performed by the isotope-enabled Community Earth System Model (iCESM). We argue that the millennialδ18Opchange in eastern Brazil mainly documents the moisture source location change associated with ITCZ migration and the change of the isotopic value of the incoming water vapor, instead of the local rainfall amount. In contrast, the central-western Amazon partially documents the moisture source location shift and local precipitation change. Our study cautions that one should not simply resort to the isotopic “amount effect” to reconstruct past precipitation in tropical regions without studying the mechanisms behind it. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2002506
- PAR ID:
- 10423812
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Climate
- Volume:
- 36
- Issue:
- 14
- ISSN:
- 0894-8755
- Page Range / eLocation ID:
- p. 4709-4721
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The isotopic composition of precipitation is used to trace water cycling and climate change, but interpretations of the environmental information recorded in central Andean precipitation isotope ratios are hindered by a lack of multi‐year records, poor spatial distribution of observations, and a predominant focus on Rayleigh distillation. To better understand isotopic variability in central Andean precipitation, we present a three‐year record of semimonthly δ18Opand δ2Hpvalues from 15 stations in southern Peru and triple oxygen isotope data, expressed as ∆′17Op, from 32 precipitation samples. Consistent with previous work, we find that elevation correlates negatively with δ18Opand that seasonal δ18Opvariations are related to upstream rainout and local convection. Spatial δ18Opvariations and atmospheric back trajectories show that both eastern‐ and western‐derived air masses bring precipitation to southern Peru. Seasonal d‐excesspcycles record moisture recycling and relative humidity at remote moisture sources, and both d‐excesspand ∆′17Opclearly differentiate evaporated and non‐evaporated samples. These results begin to establish the natural range of unevaporated ∆′17Opvalues in the central Andes and set the foundation for future paleoclimate and paleoaltimetry studies in the region. This study highlights the hydrologic understanding that comes from a combination of δ18Op, d‐excessp, and ∆′17Opdata and helps identify the evaporation, recycling, and rainout processes that drive water cycling in the central Andes.more » « less
- 
            Abstract We evaluate the efficacy of the stable isotope composition of precipitation and plant waxes as proxies for paleoaltimetry and paleohydrology in the northern tropical Andes. We report monthly hydrogen (δ2Hp) and oxygen (δ18Op) isotope values of precipitation for an annual cycle, and hydrogen isotope values of plant waxes (δ2Hwax) obtained from modern soils along the eastern and western flanks of the Eastern Cordillera of Colombia. δ2Hp, δ18Op, as well as the unweighted mean δ2Hwaxvalues ofn‐C29,n‐C31, andn‐C33n‐alkanes in the eastern flank show a dependence on elevation (R2 = 0.90, 0.82, and 0.65, respectively). In stark contrast, the stable isotope compositions of neither precipitation nor plant waxes from the western flank correlate with elevation (R2 < 0.23), on top of a negligible (p‐value >0.05) correlation between δ2Hwaxand δ2Hp. In general, δ2Hwaxvalues along the eastern flank of the Eastern Cordillera seem to follow the trend of a simple Rayleigh distillation process that is consistent with studies elsewhere on the eastern side of the Andes in South America. Neither δ2Hpnor δ18Op, and therefore δ2Hwax, offer reliable estimates of past elevations in the western flank, due perhaps to water vapor source mixing, evaporation overprint, contrasting plant communities, and/or differences in evapotranspiration. Thus, δ2Hwaxis only reliable for paleohydrology and paleoaltimetry reconstructions on the eastern flank of the Andes, whereas interpretations based on δ2Hpand/or δ18Opwest of the highest point of the Eastern Cordillera need to consider mixing of moisture sources in addition to precipitation amount.more » « less
- 
            Abstract Hydroclimate variability in tropical South America is strongly regulated by the South American Summer Monsoon (SASM). However, past precipitation changes are poorly constrained due to limited observations and high‐resolution paleoproxies. We found that summer precipitation and the El Niño‐Southern Oscillation (ENSO) variability are well registered in tree‐ring stable oxygen isotopes (δ18OTR) ofPolylepis tarapacanain the Chilean and Bolivian Altiplano in the Central Andes (18–22°S, ∼4,500 m a.s.l.) with the northern forests having the strongest climate signal. More enrichedδ18OTRvalues were found at the southern sites likely due to the increasing aridity toward the southwest of the Altiplano. The climate signal ofP. tarapacana δ18OTRis the combined result of moisture transported from the Amazon Basin, modulated by the SASM, ENSO, and local evaporation, and emerges as a novel tree‐ring climate proxy for the southern tropical Andes.more » « less
- 
            Abstract In the Amazon basin, intense precipitation recycling across the forest significantly modifies the isotopic composition of rainfall (δ18O, δD). In the tropical hydrologic cycle, such an effect can be identified through deuterium excess (dxs), yet it remains unclear what environmental factors control dxs, increasing the uncertainty of dxs‐based paleoclimate reconstructions. Here we present a 4‐year record of the isotopic composition of rainfall, monitored in the northwestern Amazon basin. We analyze the isotopic variations as a function of the air mass history, based on atmospheric back trajectory analyses, satellite observations of precipitation upstream, leaf area index, and simulated moisture recycling along the transport pathway. We show that the precipitation recycling in the forest exerts a significant control on the isotopic composition of precipitation in the northwestern Amazon basin, especially on dxs during the dry season (r= 0.71). Applying these observations to existing speleothem and pollen paleorecords, we conclude that winter precipitation increased after the mid‐Holocene, as the expansion of the forest allowed for more moisture recycling. Therefore, forest effects should be considered when interpreting paleorecords of past precipitation changes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
