This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) .
more »
« less
The construction of a E7-like quantum subgroup of SU(3)
In this short note we construct an embedding of the planar algebra for $$\overline{\Rep(U_q(\mathfrak{sl}_3))}$$ at $$q = e^{2\pi i \frac{1}{24}}$$ into the graph planar algebra of di Francesco and Zuber's candidate graph $$\mathcal{E}_4^{12}$$. Via the graph planar algebra embedding theorem we thus construct a rank 11 module category over $$\overline{\Rep(U_q(\mathfrak{sl}_3))}$$ whose graph for action by the vector representation is $$\mathcal{E}_4^{12}$$. This fills a small gap in the literature on the construction of $$\overline{\Rep(U_q(\mathfrak{sl}_3))}$$ module categories. As a consequence of our construction, we obtain the principal graphs of subfactors constructed abstractly by Evans and Pugh.
more »
« less
- Award ID(s):
- 2245935
- PAR ID:
- 10534937
- Publisher / Repository:
- Taylor and Francis
- Date Published:
- Journal Name:
- Communications in Algebra
- Volume:
- 52
- Issue:
- 9
- ISSN:
- 0092-7872
- Page Range / eLocation ID:
- 4013 to 4022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $$\mathfrak{sl}_k$$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $$\mathfrak{sl}_3$$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $$\mathfrak{sl}_2$$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $$\mathfrak{sl}_3$$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $$\mathfrak{sl}_3$$.more » « less
-
Let ρ ¯ : G Q → GSp 4 ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the 3 3 -torsion of a principally polarized abelian surface A / Q A/\mathbf {Q} . We prove that the moduli space A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces B / Q B/\mathbf {Q} admitting a symplectic isomorphism B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over Q \mathbf {Q} when ρ ¯ \overline {\rho } is surjective, even though it is both rational over C \mathbf {C} and unirational over Q \mathbf {Q} via a map of degree 6 6 .more » « less
-
A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions. We specialize to certain gaugeable cases, specifically, fusion categories of the form$$ \textrm{Rep}\left(\mathcal{H}\right) $$ for$$ \mathcal{H} $$ a suitable Hopf algebra (which includes the special case Rep(G) forGa finite group). We also specialize to the case that the fusion category is multiplicity-free. We discuss how to construct a modular-invariant partition function from a choice of Frobenius algebra structure on$$ {\mathcal{H}}^{\ast } $$ . We discuss how ordinaryGorbifolds for finite groupsGare a special case of the construction, corresponding to the fusion category Vec(G) = Rep(ℂ[G]*). For the cases Rep(S3), Rep(D4), and Rep(Q8), we construct the crossing kernels for general intertwiner maps. We explicitly compute partition functions in the examples of Rep(S3), Rep(D4), Rep(Q8), and$$ \textrm{Rep}\left({\mathcal{H}}_8\right) $$ , and discuss applications inc= 1 CFTs. We also discuss decomposition in the special case that the entire noninvertible symmetry group acts trivially.more » « less
-
null (Ed.)A bstract We study two-dimensional celestial conformal field theory describing four- dimensional $$ \mathcal{N} $$ N =1 supergravity/Yang-Mills systems and show that the underlying symmetry is a supersymmetric generalization of BMS symmetry. We construct fermionic conformal primary wave functions and show how they are related via supersymmetry to their bosonic partners. We use soft and collinear theorems of supersymmetric Einstein-Yang- Mills theory to derive the OPEs of the operators associated to massless particles. The bosonic and fermionic soft theorems are shown to form a sequence under supersymmetric Ward identities. In analogy with the energy momentum tensor, the supercurrents are shadow transforms of soft gravitino operators and generate an infinite-dimensional super- symmetry algebra. The algebra of $$ {\mathfrak{sbms}}_4 $$ sbms 4 generators agrees with the expectations based on earlier work on the asymptotic symmetry group of supergravity. We also show that the supertranslation operator can be written as a product of holomorphic and anti-holomorphic supercurrents.more » « less
An official website of the United States government

