Abstract We present Atacama Large Millimeter/submillimeter Array observations of the ∼10,000 au environment surrounding 21 protostars in the Orion A molecular cloud tracing outflows. Our sample is composed of Class 0 to flat-spectrum protostars, spanning the full ∼1 Myr lifetime. We derive the angular distribution of outflow momentum and energy profiles and obtain the first two-dimensional instantaneous mass, momentum, and energy ejection rate maps using our new approach: the pixel flux-tracing technique. Our results indicate that by the end of the protostellar phase, outflows will remove ∼2–4 M ⊙ from the surrounding ∼1 M ⊙ low-mass core. These high values indicate that outflows remove a significant amount of gas from their parent cores and continuous core accretion from larger scales is needed to replenish core material for star formation. This poses serious challenges to the concept of cores as well-defined mass reservoirs , and hence to the simplified core-to-star conversion prescriptions. Furthermore, we show that cavity opening angles, and momentum and energy distributions all increase with protostar evolutionary stage. This is clear evidence that even garden-variety protostellar outflows: (a) effectively inject energy and momentum into their environments on 10,000 au scales, and (b) significantly disrupt their natal cores, ejecting a large fraction of the mass that would have otherwise fed the nascent star. Our results support the conclusion that protostellar outflows have a direct impact on how stars get their mass, and that the natal sites of individual low-mass star formation are far more dynamic than commonly accepted theoretical paradigms.
more »
« less
Masers as Tracers of Angular Momentum in Molecular Outflows
The dissipation of angular momentum of collapsing molecular cores is a key component in the formation of stars. Previous observations have reported that highly collimated protostellar jets can remove angular momentum from low-mass protostars. In contrast, there is no clear evidence that this occurs for high-mass protostars. Here we report the results of developing a data analysis platform to investigate whether molecular masers in the outflows of two high-mass star forming regions, DR21(OH) and W75N(B), trace net angular momentum. No statistically significant evidence was found for masers to trace net angular momentum transfer in these regions. However, our results show that high-angular resolution observations of masers near high-mass protostars have the potential of revealing this phenomenon at scales similar to the specific angular momentum carried by planets in our Solar System.
more »
« less
- Award ID(s):
- 1814063
- PAR ID:
- 10423937
- Date Published:
- Journal Name:
- Tecnociencia
- Volume:
- 25
- Issue:
- 1
- ISSN:
- 2415-0940
- Page Range / eLocation ID:
- 180-192
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT G0.253+0.016, aka ‘the Brick’, is one of the most massive (>105 M⊙) and dense (>104 cm−3) molecular clouds in the Milky Way’s Central Molecular Zone. Previous observations have detected tentative signs of active star formation, most notably a water maser that is associated with a dust continuum source. We present ALMA Band 6 observations with an angular resolution of 0.13 arcsec (1000 AU) towards this ‘maser core’ and report unambiguous evidence of active star formation within G0.253+0.016. We detect a population of eighteen continuum sources (median mass ∼2 M⊙), nine of which are driving bi-polar molecular outflows as seen via SiO (5–4) emission. At the location of the water maser, we find evidence for a protostellar binary/multiple with multidirectional outflow emission. Despite the high density of G0.253+0.016, we find no evidence for high-mass protostars in our ALMA field. The observed sources are instead consistent with a cluster of low-to-intermediate-mass protostars. However, the measured outflow properties are consistent with those expected for intermediate-to-high-mass star formation. We conclude that the sources are young and rapidly accreting, and may potentially form intermediate- and high-mass stars in the future. The masses and projected spatial distribution of the cores are generally consistent with thermal fragmentation, suggesting that the large-scale turbulence and strong magnetic field in the cloud do not dominate on these scales, and that star formation on the scale of individual protostars is similar to that in Galactic disc environments.more » « less
-
Abstract Using the Karl G. Jansky Very Large Array (VLA), we have conducted a survey for 22 GHz, 6 1,6 –5 2,3 H 2 O masers toward the Serpens South region. The masers were also observed with the Very Long Baseline Array following the VLA detections. We detect for the first time H 2 O masers in the Serpens South region that are found to be associated to three Class 0–Class I objects, including the two brightest protostars in the Serpens South cluster, known as CARMA-6 and CARMA-7. We also detect H 2 O masers associated to a source with no outflow or jet features. We suggest that this source is most probably a background asymptotic giant branch star projected in the direction of Serpens South. The spatial distribution of the emission spots suggest that the masers in the three Class 0–Class I objects emerge very close to the protostars and are likely excited in shocks driven by the interaction between a protostellar jet and the circumstellar material. Based on the comparison of the distributions of bolometric luminosity of sources hosting 22 GHz H 2 O masers and 162 young stellar objects covered by our observations, we identify a limit of L Bol ≈ 10 L ⊙ for a source to host water masers. However, the maser emission shows strong variability in both intensity and velocity spread, and therefore masers associated to lower-luminosity sources may have been missed by our observations. We also report 11 new sources with radio continuum emission at 22 GHz.more » « less
-
Abstract Protostellar disks are an ubiquitous part of the star formation process and the future sites of planet formation. As part of the Early Planet Formation in Embedded Disks large program, we present high angular resolution dust continuum (∼40 mas) and molecular line (∼150 mas) observations of the Class 0 protostar IRAS 15398–3359. The dust continuum is small, compact, and centrally peaked, while more extended dust structures are found in the outflow directions. We perform a 2D Gaussian fitting and find the deconvolved size and 2σradius of the dust disk to be 4.5 × 2.8 au and 3.8 au, respectively. We estimate the gas+dust disk mass assuming optically thin continuum emission to be 0.6MJ–1.8MJ, indicating a very low mass disk. The CO isotopologues trace components of the outflows and inner envelope, while SO traces a compact, rotating disk-like component. Using several rotation curve fittings on the position–velocity diagram of the SO emission, the lower limits of the protostellar mass and gas disk radius are 0.022M⊙and 31.2 au, respectively, from our Modified 2 single power-law fitting. A conservative upper limit of the protostellar mass is inferred to be 0.1M⊙. The protostellar mass accretion rate and the specific angular momentum at the protostellar disk edge are found to be in the range of (1.3–6.1) × 10−6M⊙yr−1and (1.2–3.8) × 10−4km s−1pc, respectively, with an age estimated between 0.4 × 104yr and 7.5 × 104yr. At this young age with no clear substructures in the disk, planet formation would likely not yet have started. This study highlights the importance of high-resolution observations and systematic fitting procedures when deriving dynamical properties of deeply embedded Class 0 protostars.more » « less
-
ABSTRACT Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.more » « less
An official website of the United States government

