skip to main content

Title: The Evolution of Protostellar Outflow Cavities, Kinematics, and Angular Distribution of Momentum and Energy in Orion A: Evidence for Dynamical Cores
Abstract We present Atacama Large Millimeter/submillimeter Array observations of the ∼10,000 au environment surrounding 21 protostars in the Orion A molecular cloud tracing outflows. Our sample is composed of Class 0 to flat-spectrum protostars, spanning the full ∼1 Myr lifetime. We derive the angular distribution of outflow momentum and energy profiles and obtain the first two-dimensional instantaneous mass, momentum, and energy ejection rate maps using our new approach: the pixel flux-tracing technique. Our results indicate that by the end of the protostellar phase, outflows will remove ∼2–4 M ⊙ from the surrounding ∼1 M ⊙ low-mass core. These high values indicate that outflows remove a significant amount of gas from their parent cores and continuous core accretion from larger scales is needed to replenish core material for star formation. This poses serious challenges to the concept of cores as well-defined mass reservoirs , and hence to the simplified core-to-star conversion prescriptions. Furthermore, we show that cavity opening angles, and momentum and energy distributions all increase with protostar evolutionary stage. This is clear evidence that even garden-variety protostellar outflows: (a) effectively inject energy and momentum into their environments on 10,000 au scales, and (b) significantly disrupt their natal cores, ejecting a large fraction of the mass that would have otherwise fed the nascent star. Our results support the conclusion that protostellar outflows have a direct impact on how stars get their mass, and that the natal sites of individual low-mass star formation are far more dynamic than commonly accepted theoretical paradigms.  more » « less
Award ID(s):
1714710 1910106 1748571
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT G0.253+0.016, aka ‘the Brick’, is one of the most massive (>105 M⊙) and dense (>104 cm−3) molecular clouds in the Milky Way’s Central Molecular Zone. Previous observations have detected tentative signs of active star formation, most notably a water maser that is associated with a dust continuum source. We present ALMA Band 6 observations with an angular resolution of 0.13 arcsec (1000 AU) towards this ‘maser core’ and report unambiguous evidence of active star formation within G0.253+0.016. We detect a population of eighteen continuum sources (median mass ∼2 M⊙), nine of which are driving bi-polar molecular outflows as seen via SiO (5–4) emission. At the location of the water maser, we find evidence for a protostellar binary/multiple with multidirectional outflow emission. Despite the high density of G0.253+0.016, we find no evidence for high-mass protostars in our ALMA field. The observed sources are instead consistent with a cluster of low-to-intermediate-mass protostars. However, the measured outflow properties are consistent with those expected for intermediate-to-high-mass star formation. We conclude that the sources are young and rapidly accreting, and may potentially form intermediate- and high-mass stars in the future. The masses and projected spatial distribution of the cores are generally consistent with thermal fragmentation, suggesting that the large-scale turbulence and strong magnetic field in the cloud do not dominate on these scales, and that star formation on the scale of individual protostars is similar to that in Galactic disc environments. 
    more » « less
  2. The dissipation of angular momentum of collapsing molecular cores is a key component in the formation of stars. Previous observations have reported that highly collimated protostellar jets can remove angular momentum from low-mass protostars. In contrast, there is no clear evidence that this occurs for high-mass protostars. Here we report the results of developing a data analysis platform to investigate whether molecular masers in the outflows of two high-mass star forming regions, DR21(OH) and W75N(B), trace net angular momentum. No statistically significant evidence was found for masers to trace net angular momentum transfer in these regions. However, our results show that high-angular resolution observations of masers near high-mass protostars have the potential of revealing this phenomenon at scales similar to the specific angular momentum carried by planets in our Solar System. 
    more » « less
  3. Aims. Thanks to the high angular resolution, sensitivity, image fidelity, and frequency coverage of ALMA, we aim to improve our understanding of star formation. One of the breakthroughs expected from ALMA, which is the basis of our Cycle 5 ALMA-IMF Large Program, is the question of the origin of the initial mass function (IMF) of stars. Here we present the ALMA-IMF protocluster selection, first results, and scientific prospects. Methods. ALMA-IMF imaged a total noncontiguous area of ~53 pc 2 , covering extreme, nearby protoclusters of the Milky Way. We observed 15 massive (2.5 −33 × 10 3 M ⊙ ), nearby (2−5.5 kpc) protoclusters that were selected to span relevant early protocluster evolutionary stages. Our 1.3 and 3 mm observations provide continuum images that are homogeneously sensitive to point-like cores with masses of ~0.2 M ⊙ and ~0.6 M ⊙ , respectively, with a matched spatial resolution of ~2000 au across the sample at both wavelengths. Moreover, with the broad spectral coverage provided by ALMA, we detect lines that probe the ionized and molecular gas, as well as complex molecules. Taken together, these data probe the protocluster structure, kinematics, chemistry, and feedback over scales from clouds to filaments to cores. Results. We classify ALMA-IMF protoclusters as Young (six protoclusters), Intermediate (five protoclusters), or Evolved (four proto-clusters) based on the amount of dense gas in the cloud that has potentially been impacted by H  II region(s). The ALMA-IMF catalog contains ~700 cores that span a mass range of ~0.15 M ⊙ to ~250 M ⊙ at a typical size of ~2100 au. We show that this core sample has no significant distance bias and can be used to build core mass functions (CMFs) at similar physical scales. Significant gas motions, which we highlight here in the G353.41 region, are traced down to core scales and can be used to look for inflowing gas streamers and to quantify the impact of the possible associated core mass growth on the shape of the CMF with time. Our first analysis does not reveal any significant evolution of the matter concentration from clouds to cores (i.e., from 1 pc to 0.01 pc scales) or from the youngest to more evolved protoclusters, indicating that cloud dynamical evolution and stellar feedback have for the moment only had a slight effect on the structure of high-density gas in our sample. Furthermore, the first-look analysis of the line richness toward bright cores indicates that the survey encompasses several tens of hot cores, of which we highlight the most massive in the G351.77 cloud. Their homogeneous characterization can be used to constrain the emerging molecular complexity in protostars of high to intermediate masses. Conclusions. The ALMA-IMF Large Program is uniquely designed to transform our understanding of the IMF origin, taking the effects of cloud characteristics and evolution into account. It will provide the community with an unprecedented database with a high legacy value for protocluster clouds, filaments, cores, hot cores, outflows, inflows, and stellar clusters studies. 
    more » « less
  4. Abstract

    Star formation is ubiquitously associated with the ejection of accretion-powered outflows that carve bipolar cavities through the infalling envelope. This feedback is expected to be important for regulating the efficiency of star formation from a natal prestellar core. These low-extinction outflow cavities greatly affect the appearance of a protostar by allowing the escape of shorter-wavelength photons. Doppler-shifted CO line emission from outflows is also often the most prominent manifestation of deeply embedded early-stage star formation. Here, we present 3D magnetohydrodynamic simulations of a disk wind outflow from a protostar forming from an initially 60Mcore embedded in a high-pressure environment typical of massive star-forming regions. We simulate the growth of the protostar fromm*= 1Mto 26Mover a period of ∼100,000 yr. The outflow quickly excavates a cavity with a half opening angle of ∼10° through the core. This angle remains relatively constant until the star reaches 4M. It then grows steadily in time, reaching a value of ∼50° by the end of the simulation. We estimate a lower limit to the star formation efficiency (SFE) of 0.43. However, accounting for continued accretion from a massive disk and residual infall envelope, we estimate that the final SFE may be as high as ∼0.7. We examine observable properties of the outflow, especially the evolution of the cavity's opening angle, total mass, and momentum flux, and the velocity distributions of the outflowing gas, and compare with the massive protostars G35.20-0.74N and G339.88-1.26 observed by the Atacama Large Millimeter/submillimeter Array (ALMA), yielding constraints on their intrinsic properties.

    more » « less
  5. Context. We started a multi-scale analysis of star formation in G202.3+2.5, an intertwined filamentary sub-region of the Monoceros OB1 molecular complex, in order to provide observational constraints on current theories and models that attempt to explain star formation globally. In the first paper (Paper I), we examined the distributions of dense cores and protostars and found enhanced star formation activity in the junction region of the filaments. Aims. In this second paper, we aim to unveil the connections between the core and filament evolutions, and between the filament dynamics and the global evolution of the cloud. Methods. We characterise the gas dynamics and energy balance in different parts of G202.3+2.5 using infrared observations from the Herschel and WISE telescopes and molecular tracers observed with the IRAM 30-m and TRAO 14-m telescopes. The velocity field of the cloud is examined and velocity-coherent structures are identified, characterised, and put in perspective with the cloud environment. Results. Two main velocity components are revealed, well separated in radial velocities in the north and merged around the location of intense N 2 H + emission in the centre of G202.3+2.5 where Paper I found the peak of star formation activity. We show that the relative position of the two components along the sightline, and the velocity gradient of the N 2 H + emission imply that the components have been undergoing collision for ~10 5 yr, although it remains unclear whether the gas moves mainly along or across the filament axes. The dense gas where N 2 H + is detected is interpreted as the compressed region between the two filaments, which corresponds to a high mass inflow rate of ~1 × 10 −3 M ⊙ yr −1 and possibly leads to a significant increase in its star formation efficiency. We identify a protostellar source in the junction region that possibly powers two crossed intermittent outflows. We show that the H  II region around the nearby cluster NCG 2264 is still expanding and its role in the collision is examined. However, we cannot rule out the idea that the collision arises mostly from the global collapse of the cloud. Conclusions. The (sub-)filament-scale observables examined in this paper reveal a collision between G202.3+2.5 sub-structures and its probable role in feeding the cores in the junction region. To shed more light on this link between core and filament evolutions, one must characterise the cloud morphology, its fragmentation, and magnetic field, all at high resolution. We consider the role of the environment in this paper, but a larger-scale study of this region is now necessary to investigate the scenario of a global cloud collapse. 
    more » « less