skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Foraging with MUSHROOMS: A Mixed-integer Linear Programming Scheduler for Multimessenger Target of Opportunity Searches with the Zwicky Transient Facility
Abstract Electromagnetic follow-up of gravitational-wave detections is very resource intensive, taking up hours of limited observation time on dozens of telescopes. Creating more efficient schedules for follow-up will lead to a commensurate increase in counterpart location efficiency without using more telescope time. Widely used in operations research and telescope scheduling, mixed-integer linear programming is a strong candidate to produce these higher-efficiency schedules, as it can make use of powerful commercial solvers that find globally optimal solutions to provided problems. We detail a new target-of-opportunity scheduling algorithm designed with Zwicky Transient Facility in mind that uses mixed-integer linear programming. We compare its performance to gwemopt , the tuned heuristic scheduler used by the Zwicky Transient Facility and other facilities during the third LIGO–Virgo gravitational-wave observing run. This new algorithm uses variable-length observing blocks to enforce cadence requirements and to ensure field observability, along with having a secondary optimization step to minimize slew time. We show that by employing a hybrid method utilizing both this scheduler and gwemopt , the previous scheduler used, in concert, we can achieve an average improvement in detection efficiency of 3%–11% over gwemopt alone for a simulated binary neutron star merger data set consistent with LIGO–Virgo’s third observing run, highlighting the potential of mixed-integer target of opportunity schedulers for future multimessenger follow-up surveys.  more » « less
Award ID(s):
2034437
PAR ID:
10423978
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
935
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During the first half of the fourth observing run (O4a) of the International Gravitational Wave Network, the Zwicky Transient Facility (ZTF) conducted a systematic search for kilonova (KN) counterparts to binary neutron star (BNS) and neutron star–black hole (NSBH) merger candidates. Here, we present a comprehensive study of the five high-significance (False Alarm Rate less than 1 yr−1) BNS and NSBH candidates in O4a. Our follow-up campaigns relied on both target-of-opportunity observations and re-weighting of the nominal survey schedule to maximize coverage. We describe the toolkit we have been developing,Fritz, an instance ofSkyPortal, instrumental in coordinating and managing our telescope scheduling, candidate vetting, and follow-up observations through a user-friendly interface. ZTF covered a total of 2841 deg2within the skymaps of the high-significance GW events, reaching a median depth ofg≈ 20.2 mag. We circulated 15 candidates, but found no viable KN counterpart to any of the GW events. Based on the ZTF non-detections of the high-significance events in O4a, we used a Bayesian approach,nimbus, to quantify the posterior probability of KN model parameters that are consistent with our non-detections. Our analysis favors KNe with initial absolute magnitude fainter than −16 mag. The joint posterior probability of a GW170817-like KN associated with all our O4a follow-ups was 64%. Additionally, we use a survey simulation software,simsurvey, to determine that our combined filtered efficiency to detect a GW170817-like KN is 36%, when considering the 5 confirmed astrophysical events in O3 (1 BNS and 4 NSBH events), along with our O4a follow-ups. Following Kasliwal et al., we derived joint constraints on the underlying KN luminosity function based on our O3 and O4a follow-ups, determining that no more than 76% of KNe fading at 1 mag day−1can peak at a magnitude brighter than −17.5 mag. 
    more » « less
  2. Understanding the noise in gravitational-wave detectors is central to detecting and interpreting gravitational-wave signals. Glitches are transient, non-Gaussian noise features that can have a range of environmental and instrumental origins. The Gravity Spy project uses a machine-learning algorithm to classify glitches based upon their time–frequency morphology. The resulting set of classified glitches can be used as input to detector-characterisation investigations of how to mitigate glitches, or data-analysis studies of how to ameliorate the impact of glitches. Here we present the results of the Gravity Spy analysis of data up to the end of the third observing run of Advanced LIGO. We classify 233981 glitches from LIGO Hanford and 379805 glitches from LIGO Livingston into morphological classes. We find that the distribution of glitches differs between the two LIGO sites. This highlights the potential need for studies of data quality to be individually tailored to each gravitational-wave observatory. 
    more » « less
  3. An advanced LIGO and Virgo’s third observing run brought another binary neutron star merger (BNS) and the first neutron-star black hole mergers. While no confirmed kilonovae were identified in conjunction with any of these events, continued improvements of analyses surrounding GW170817 allow us to project constraints on the Hubble Constant (H0), the Galactic enrichment fromr-process nucleosynthesis, and ultra-dense matter possible from forthcoming events. Here, we describe the expected constraints based on the latest expected event rates from the international gravitational-wave network and analyses of GW170817. We show the expected detection rate of gravitational waves and their counterparts, as well as how sensitive potential constraints are to the observed numbers of counterparts. We intend this analysis as support for the community when creating scientifically driven electromagnetic follow-up proposals. During the next observing run O4, we predict an annual detection rate of electromagnetic counterparts from BNS of 0.43 0.26 + 0.58 ( 1.97 1.2 + 2.68 ) for the Zwicky Transient Facility (Rubin Observatory). 
    more » « less
  4. Abstract Using data from the IceCube Neutrino Observatory, we searched for high-energy neutrino emission from the gravitational-wave events detected by the advanced LIGO and Virgo detectors during their third observing run. We did a low-latency follow-up on the public candidate events released during the detectors’ third observing run and an archival search on the 80 confident events reported in the GWTC-2.1 and GWTC-3 catalogs. An extended search was also conducted for neutrino emission on longer timescales from neutron star containing mergers. Follow-up searches on the candidate optical counterpart of GW190521 were also conducted. We used two methods; an unbinned maximum likelihood analysis and a Bayesian analysis using astrophysical priors, both of which were previously used to search for high-energy neutrino emission from gravitational-wave events. No significant neutrino emission was observed by any analysis, and upper limits were placed on the time-integrated neutrino flux as well as the total isotropic equivalent energy emitted in high-energy neutrinos. 
    more » « less
  5. null (Ed.)
    ABSTRACT Joint multimessenger observations with gravitational waves and electromagnetic (EM) data offer new insights into the astrophysical studies of compact objects. The third Advanced LIGO and Advanced Virgo observing run began on 2019 April 1; during the 11 months of observation, there have been 14 compact binary systems candidates for which at least one component is potentially a neutron star. Although intensive follow-up campaigns involving tens of ground and space-based observatories searched for counterparts, no EM counterpart has been detected. Following on a previous study of the first six months of the campaign, we present in this paper the next five months of the campaign from 2019 October to 2020 March. We highlight two neutron star–black hole candidates (S191205ah and S200105ae), two binary neutron star candidates (S191213g and S200213t), and a binary merger with a possible neutron star and a ‘MassGap’ component, S200115j. Assuming that the gravitational-wave (GW) candidates are of astrophysical origin and their location was covered by optical telescopes, we derive possible constraints on the matter ejected during the events based on the non-detection of counterparts. We find that the follow-up observations during the second half of the third observing run did not meet the necessary sensitivity to constrain the source properties of the potential GW candidate. Consequently, we suggest that different strategies have to be used to allow a better usage of the available telescope time. We examine different choices for follow-up surveys to optimize sky localization coverage versus observational depth to understand the likelihood of counterpart detection. 
    more » « less