skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide
Abstract Stereoselective ring-opening polymerization catalysts are used to produce degradable stereoregular poly(lactic acids) with thermal and mechanical properties that are superior to those of atactic polymers. However, the process of discovering highly stereoselective catalysts is still largely empirical. We aim to develop an integrated computational and experimental framework for efficient, predictive catalyst selection and optimization. As a proof of principle, we have developed a Bayesian optimization workflow on a subset of literature results for stereoselective lactide ring-opening polymerization, and using the algorithm, we identify multiple new Al complexes that catalyze either isoselective or heteroselective polymerization. In addition, feature attribution analysis uncovers mechanistically meaningful ligand descriptors, such as percent buried volume (%Vbur) and the highest occupied molecular orbital energy (EHOMO), that can access quantitative and predictive models for catalyst development.  more » « less
Award ID(s):
1807911 1845531
PAR ID:
10424040
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of chemically recyclable polymers promises a closed‐loop approach towards a circular plastic economy but still faces challenges in structure/property diversity and depolymerization selectivity. Here we report the first successful coordination ring‐opening polymerization of 4,5‐trans‐cyclohexyl‐fused γ‐butyrolactone (M1) with lanthanide catalysts at room temperature, producing P(M1) withMnup to 89 kg mol−1, high thermal stability, and a linear or cyclic topology. The same catalyst also catalyses selective depolymerization of P(M1) back toM1exclusively at 120 °C. This coordination polymerization is also living, enabling the synthesis of well‐defined block copolymer. 
    more » « less
  2. Abstract Bacterial poly(3-hydroxybutyrate) (P3HB) is a perfectly isotactic, crystalline material possessing properties suitable for substituting petroleum plastics, but high costs and low volumes of its production are impractical for commodity applications. The chemical synthesis of P3HB via ring-opening polymerization (ROP) of racemicβ-butyrolactone has attracted intensive efforts since the 1960s, but not yet produced P3HB with high isotacticity and molecular weight. Here, we report a route utilizing racemic cyclic diolide (rac-DL) derived from bio-sourced succinate. With stereoselective racemic catalysts, the ROP ofrac-DL under ambient conditions produces rapidly P3HB with perfect isotacticity ([mm] > 99%), high melting temperature (Tm = 171 °C), and high molecular weight (Mn = 1.54 × 105 g mol−1,Đ = 1.01). With enantiomeric catalysts, kinetic resolution polymerizations ofrac-DL automatically stops at 50% conversion and yields enantiopure (R,R)-DL and (S,S)-DL with >99%e.e. and the corresponding poly[(S)-3HB] and poly[(R)-3HB] with highTm = 175 °C. 
    more » « less
  3. Abstract Construction of robust, stereocomplexed (sc) crystalline material, based on a recently discovered infinitely recyclable polymer system, requires blending of enantiomeric polymer chains produced from respective enantiopure, fused six‐five bicyclic lactones. Herein, the stereoselective polymerization of the racemic monomer by yttrium catalysts bearing tetradentate ligands is reported, where the tethered donor sidearm switches the heteroselectivity of the catalyst to isoselectivity when it is changed from the β‐OMe to β‐NMe2sidearm. The latter catalyst produces an isotactic stereoblock polymer (Pmup to 0.95) that forms the crystalline sc‐material with aTmof up to 171 °C. This sc‐material can be fully depolymerized back to rac‐monomer in a quantitative yield and purity, thus establishing its circular life cycle. 
    more » « less
  4. Abstract Cationic bottlebrush homopolymers are polymerized using a grafting‐through approach by ring‐opening metathesis polymerization (ROMP) to afford well‐defined polymers. Quaternary ammonium macromonomers (MMs) are prepared by quaternizing tertiary amine MMs synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization. The quaternary ammonium MMs undergo ROMP to target molecular weights (Mn= 30 000–100 000 g mol−1) and a low dispersity (Đ= 1.10–1.30). Halide‐ligand exchange between the third generation Grubbs catalyst (G3) and halide counter ions (bromide and iodide ions) of MMs changes the catalyst activity throughout ROMP, causing it to deviate from pseudo‐first order kinetic behavior; however, the polymerization still follows controlled behavior without significant catalyst termination. Increasing steric bulk of the MMs decreases the polymerization rate as well. Amphiphilic block copolymers are synthesized by sequential polymerization of quaternary ammonium MMs and polystyrene (PS) MMs. Using a PS macroinitiator affords block copolymers with lowerĐvalues as compared to the less active cationic macroinitiator. 
    more » « less
  5. Abstract The ring‐opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3‐diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn≤9.4 kg mol−1) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs’ 2ndgeneration catalyst for the polymerization of 3‐methyl‐3‐phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy. 
    more » « less