The optimal transport barycenter (a.k.a. Wasserstein barycenter) is a fundamental notion of averaging that extends from the Euclidean space to the Wasserstein space of probability distributions. Computation of the unregularized barycenter for discretized probability distributions on point clouds is a challenging task when the domain dimension d>1. Most practical algorithms for approximating the barycenter problem are based on entropic regularization. In this paper, we introduce a nearly linear time O(mlogm) and linear space complexity O(m) primal-dual algorithm, the Wasserstein-Descent ℍ˙1-Ascent (WDHA) algorithm, for computing the exact barycenter when the input probability density functions are discretized on an m-point grid. The key success of the WDHA algorithm hinges on alternating between two different yet closely related Wasserstein and Sobolev optimization geometries for the primal barycenter and dual Kantorovich potential subproblems. Under reasonable assumptions, we establish the convergence rate and iteration complexity of WDHA to its stationary point when the step size is appropriately chosen. Superior computational efficacy, scalability, and accuracy over the existing Sinkhorn-type algorithms are demonstrated on high-resolution (e.g., 1024×1024 images) 2D synthetic and real data.
more »
« less
Exponential Convergence of Sinkhorn Under Regularization Scheduling
n 2013, Cuturi [9] introduced the SINKHORN algorithm for matrix scaling as a method to compute solutions to regularized optimal transport problems. In this paper, aiming at a better convergence rate for a high accuracy solution, we work on understanding the SINKHORN algorithm under regularization scheduling, and thus modify it with a mechanism that adaptively doubles the regularization parameter η periodically. We prove that such modified version of SINKHORN has an exponential convergence rate as iteration complexity depending on log(l/ɛ) instead of ɛ-o(1) from previous analyses [1, 9] in the optimal transport problems with integral supply and demand. Furthermore, with cost and capacity scaling procedures, the general optimal transport problem can be solved with a logarithmic dependence on 1/ɛ as well.
more »
« less
- Award ID(s):
- 2330255
- PAR ID:
- 10424527
- Editor(s):
- Jonathan Berry, David Shmoys
- Date Published:
- Journal Name:
- SIAM Conference on Applied and Computational Discrete Algorithms (ACDA23)
- Page Range / eLocation ID:
- 180-188
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wasserstein distance plays increasingly important roles in machine learning, stochastic programming and image processing. Major efforts have been under way to address its high computational complexity, some leading to approximate or regularized variations such as Sinkhorn distance. However, as we will demonstrate, regularized variations with large regularization parameter will degradate the performance in several important machine learning applications, and small regularization parameter will fail due to numerical stability issues with existing algorithms. We address this challenge by developing an Inexact Proximal point method for exact Optimal Transport problem (IPOT) with the proximal operator approximately evaluated at each iteration using projections to the probability simplex. The algorithm (a) converges to exact Wasserstein distance with theoretical guarantee and robust regularization parameter selection, (b) alleviates numerical stability issue, (c) has similar computational complexity to Sinkhorn, and (d) avoids the shrinking problem when apply to generative models. Furthermore, a new algorithm is proposed based on IPOT to obtain sharper Wasserstein barycenter.more » « less
-
The classical static Schrödinger Bridge (SSB) problem, which seeks the most likely stochastic evolution between two marginal probability measures, has been studied extensively in the optimal transport and statistical physics communities, and more recently in machine learning communities in the surge of generative models. The standard approach to solve SSB is to first identify its Kantorovich dual and use Sinkhorn's algorithm to find the optimal potential functions. While the original SSB is only a strictly convex minimization problem, this approach is known to warrant linear convergence under mild assumptions. In this work, we consider a generalized SSB allowing any strictly increasing divergence functional, far generalizing the entropy functional x log(x) in the standard SSB. This problem naturally arises in a wide range of seemingly unrelated problems in entropic optimal transport, random graphs/matrices, and combinatorics. We establish Kantorovich duality and linear convergence of Sinkhorn's algorithm for the generalized SSB problem under mild conditions. Our results provide a new rigorous foundation for understanding Sinkhorn-type iterative methods in the context of large-scale generalized Schrödinger bridges.more » « less
-
Computing optimal transport distances such as the earth mover's distance is a fundamental problem in machine learning, statistics, and computer vision. Despite the recent introduction of several algorithms with good empirical performance, it is unknown whether general optimal transport distances can be approximated in near-linear time. This paper demonstrates that this ambitious goal is in fact achieved by Cuturi's Sinkhorn Distances. This result relies on a new analysis of Sinkhorn iterations, which also directly suggests a new greedy coordinate descent algorithm Greenkhorn with the same theoretical guarantees. Numerical simulations illustrate that Greenkhorn significantly outperforms the classical Sinkhorn algorithm in practice.more » « less
-
null (Ed.)Abstract Optimal transport maps and plans between two absolutely continuous measures $$\mu$$ and $$\nu$$ can be approximated by solving semidiscrete or fully discrete optimal transport problems. These two problems ensue from approximating $$\mu$$ or both $$\mu$$ and $$\nu$$ by Dirac measures. Extending an idea from Gigli (2011, On Hölder continuity-in-time of the optimal transport map towards measures along a curve. Proc. Edinb. Math. Soc. (2), 54, 401–409), we characterize how transport plans change under the perturbation of both $$\mu$$ and $$\nu$$. We apply this insight to prove error estimates for semidiscrete and fully discrete algorithms in terms of errors solely arising from approximating measures. We obtain weighted $L^2$ error estimates for both types of algorithms with a convergence rate $$O(h^{1/2})$$. This coincides with the rate in Theorem 5.4 in Berman (2018, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport. Preprint available at arXiv:1803.00785) for semidiscrete methods, but the error notion is different.more » « less
An official website of the United States government

