skip to main content


Title: Transdisciplinary approaches to graduate student training for food–energy–water challenges
Abstract

Systems‐level approaches are required for addressing the world's major challenges at the food–energy–water nexus. Taking on complex issues, such as rising food insecurity, malnutrition, and food waste, concomitant with unprecedented levels of stress on environmental systems, will necessitate that future scholars and decision makers be prepared through transdisciplinary student training. However, in higher education, students tend to be siloed within their discipline. In this study, we present a case for the development of transdisciplinary graduate student training based on an inter‐institutional and fully remote group of graduate students who assembled during the COVID‐19 pandemic to address the issue of food waste. We use our wide‐ranging disciplinary backgrounds, high‐performance transdisciplinary team training, and stakeholder feedback to develop and conduct a weeklong social media campaign to share educational resources for reducing household food waste. This work offers valuable lessons learned through the student's lens to those seeking to create or improve future transdisciplinary training methods for tackling food waste and other global grand challenges. Key insights from this process include the importance of accountability and open communication when conducting collaborative teamwork, the utility of various mobile and online tools for effectively facilitating remote group work, and the vital role of transdisciplinarity in devising creative solutions.

 
more » « less
Award ID(s):
1639340 1833225
NSF-PAR ID:
10424577
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Natural Sciences Education
Volume:
52
Issue:
1
ISSN:
2168-8273
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Food, energy and water (FEW) systems are critically stressed worldwide. These challenges require transformative science, engineering and policy solutions. However, cross-cutting solutions can only arise through transdisciplinary training of our future science and policy leaders. The University of Maryland Global STEWARDS National Science Foundation Research Traineeship seeks to meet these needs. This study assessed a foundational component of the program: a novel, experiential course focused on transdisciplinary training and communication skills. We drew on data from the first two offerings of the course and utilized a mixed-method, multi-informant evaluation that included validated pre–post surveys, individual interviews and focus groups. Paired Mann–Whitney–Wilcoxon tests were used to compare pre- and post-means. After the course, students reported improvements in their ability to identify strengths and weaknesses of multiple FEW nexus disciplines; articulate interplays between FEW systems at multiple scales; explain to peers the most important aspects of their research; and collaborate with scientists outside their field. Students also reported improvements in their oral and written communication skills, along with their ability to critically review others’ work. Our findings demonstrate that this graduate course can serve as an effective model to develop transdisciplinary researchers and communicators through cutting edge, experiential curricular approaches. 
    more » « less
  2. Societal Impact Statement

    Botanical careers are more important than ever, given that environmental challenges such as climate change and deforestation threaten plants daily and because plants contribute to solutions to these problems. Plants act as our sources of food, medicine, textiles, and oxygen, which means finding ways to mitigate these environmental challenges is crucial. Despite this, little is known about what career opportunities exist for botanists outside of academia and how well academia is training graduate students for these careers. This study centers on the current state of academic botanical careers and how well students completing post‐baccalaureate degrees (herein referred to as graduate students) are being prepared to fill careers within the botanical workforce.

    Summary

    Plant science plays a crucial role in our society and in ongoing efforts to address many global challenges, including food insecurity and climate change. Despite a predicted increase in botanical career opportunities, little is known about how well academia is training graduate students for careers outside of academia.

    To further our understanding of the current state of academic training for botanical careers, we surveyed 85 faculty and 40 graduate students working in academia in the plant sciences in the United States.

    We found that the top challenges to university professors in academia are lack of support staff and funding, whereas students completing their post‐baccalaureate degrees cited finances and lack of supportive mentoring as their top challenges. Despite the fact that most graduate students surveyed wanted a career at a research‐intensive university, many botanists in academia are retiring without being replaced by more botanists. Faculty expertise is also misaligned with needs from industry and government employers, causing challenges to training graduate students for these careers outside of academia. Although our data point to a lack of career opportunities within academia, we also note that current graduate student education still emphasizes such careers and is not properly preparing graduate students for the careers they are more likely to obtain within the private and government sectors.

    We discuss the implications of these findings and present several recommendations for preparing future generations of plant scientists for more realistic career trajectories.

     
    more » « less
  3. Synopsis

    Cross-disciplinary research enables us to tackle complex problems that require expertise from different fields. Such collaborations involve researchers who have different perspectives, communication styles, and knowledge bases, and can produce results far greater than the sum of their parts. However, in an era of increasing scientific specialization, there exist many barriers for students and early-career researchers (ECRs) interested in training and undertaking interdisciplinary research endeavors. This perspective examines the challenges that students and ECRs perceive and experience in cross-disciplinary work and proposes pathways to create more inclusive and welcoming research environments. This work emerges from a National Science Foundation (NSF)-funded workshop held during the Society for Integrative and Comparative Biology (SICB) Annual Meeting in January 2023 in Austin, TX. The workshop brought together seasoned interdisciplinary scientists with undergraduate and graduate students to identify and discuss perceived challenges through small group discussions and experience sharing. Through summarizing a range of student concerns about embarking on careers as interdisciplinary scientists and identifying ways to dismantle institutional and lab management-level barriers, we aim to promote an inclusive and collaborative problem-solving environment for scientists of all experience levels.

     
    more » « less
  4. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  5. Environmental impacts associated with inefficient and ineffective land-based wastewater treatment have direct implications for regional governments and local communities in the Caribbean due to the links between environmental quality of coastal areas (e.g. coral reefs) and socioeconomic activities (e.g. tourism, commercial fishing, cultural heritage, recreation). In Placencia, Belize an interdisciplinary team of students and community members investigate the tradeoffs that exists amid a food-energy-water systems (FEWS) case study, in order to co-create sustainable solutions. This work partners with Fragments of Hope and EcoFriendly Solutions to take a systems approach to consider the dynamic and interrelated factors and leverage points (e.g. technological, regulatory, organizational, social, economic) related to the adoption and sustainability of wastewater innovations at cayes where coral restoration work is occurring. This technology can improve water quality issues in sensitive marine ecosystems and productively reuse water and nutrients to grow food. Results show that marketing and technical strategies contributed to incremental improvements in the system's sustainability, while changing community behaviors (i.e. reporting the correct number of users and reclaiming resources – water and nutrients – for food production), was the more significant way to influence the sustainable management of the wastewater resources and to protect the coastal environment. The work is situated within the deeper context of graduate student research and training where the University of South Florida is partnering with the Caribbean Community Climate Change Center to raise up a new generation of globally competent science, technology, engineering, and math (STEM) students. These students develop interdisciplinary and 21st century skills, as well as technical and methodological flexibility to address the complexity inherent in “wicked problems”. To accomplish this, the partners provide resources and training for interdisciplinary and systems-based teaching and research that results in original and impactful solutions developed alongside community members to locally and globally focused challenges. 
    more » « less