skip to main content


Title: Systems Thinking to Protect Coral Reefs: A Case Study Rooted in Community Partnerships
Environmental impacts associated with inefficient and ineffective land-based wastewater treatment have direct implications for regional governments and local communities in the Caribbean due to the links between environmental quality of coastal areas (e.g. coral reefs) and socioeconomic activities (e.g. tourism, commercial fishing, cultural heritage, recreation). In Placencia, Belize an interdisciplinary team of students and community members investigate the tradeoffs that exists amid a food-energy-water systems (FEWS) case study, in order to co-create sustainable solutions. This work partners with Fragments of Hope and EcoFriendly Solutions to take a systems approach to consider the dynamic and interrelated factors and leverage points (e.g. technological, regulatory, organizational, social, economic) related to the adoption and sustainability of wastewater innovations at cayes where coral restoration work is occurring. This technology can improve water quality issues in sensitive marine ecosystems and productively reuse water and nutrients to grow food. Results show that marketing and technical strategies contributed to incremental improvements in the system's sustainability, while changing community behaviors (i.e. reporting the correct number of users and reclaiming resources – water and nutrients – for food production), was the more significant way to influence the sustainable management of the wastewater resources and to protect the coastal environment. The work is situated within the deeper context of graduate student research and training where the University of South Florida is partnering with the Caribbean Community Climate Change Center to raise up a new generation of globally competent science, technology, engineering, and math (STEM) students. These students develop interdisciplinary and 21st century skills, as well as technical and methodological flexibility to address the complexity inherent in “wicked problems”. To accomplish this, the partners provide resources and training for interdisciplinary and systems-based teaching and research that results in original and impactful solutions developed alongside community members to locally and globally focused challenges.  more » « less
Award ID(s):
1735320 1243510
PAR ID:
10111354
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
12 th Natural Resource Management & Research Symposium “BELIZE, ‘THROUGH THE BOTTLENECK’”
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Meeting the UN Sustainable Development Goals (SDGs) requires innovations in education to build key competencies in all learners. Learning objectives for SDGs identified by UNESCO like the “Integrated problem-solving competency,” if integrated properly with high school curriculum, can contribute sustainable development solutions for Belize. Additionally, the 3rd international conference of SIDS http://www.sids2014.org) under the theme, “The sustainable development of small island developing states through genuine and durable partnerships,” stressed investment in education and training, including through partnerships with migrants and diaspora communities, with “concrete, focused, forward-looking and action oriented programmes.” The Sagicor Visionaries Challenge, a sustainability challenge launched by the Caribbean Examinations Council (CXC), the Caribbean Science Foundation, and the Ministries of Education across 12 Caribbean countries in 2012, represented an example of such a partnership that fostered many key competencies now needed for meeting the SDGs. It asked secondary school students in the Caribbean to identify a challenge facing their school and or community, propose a sustainable and innovative solution, and show how that solution uses Science Technology Engineering and Mathematics (STEM) as well as got the support of the school community. For its inaugural year, teacher and student sensitization workshops were organized in each country. Teachers supervised the student projects with support from mentors who were either local or virtual, including many members of the Caribbean diaspora. 175 projects entered the competition, representing 900 students ranging in age from 11 to 19. Experience from the inaugural year, which saw Belize’s Bishop Martin Secondary emerge the regional challenge winner, demonstrated interest by young people of the Caribbean in many of the themes listed in the SIDS outcomes like climate change, sustainable energy, disaster risk reduction, sustainable oceans and seas, food security and nutrition, water and sanitation, sustainable transportation, sustainable consumption and production, and health and non-communicable diseases. Reflection on student projects from Belize from the 2013 challenge, as well as current examples of teacher led inquiry-based projects for CXC’s School Based Assessments (SBAs), offer multiple opportunities for ensuring reef to ridge sustainable development in Belize and the rest of the Caribbean. 
    more » « less
  2. null (Ed.)
    Engineers are increasingly called on to develop sustainable solutions to complex problems. Within engineering, however, economic and environmental aspects of sustainability are often prioritized over social ones. This paper describes how efficiency and sustainability were conceptualized and interrelated by students in a newly developed second-year undergraduate engineering course, An Integrated Approach to Energy. This course took a sociotechnical approach and emphasized modern energy concepts (e.g., renewable energy), current issues (e.g., climate change), and local and personal contexts (e.g., connecting to students’ lived experiences). Analyses of student work and semi-structured interview data were used to explore how students conceptualized sustainability and efficiency. We found that in this cohort (n = 17) students often approached sustainability through a lens of efficiency, believing that if economic and environmental resources were prioritized and optimized, sustainability would be achieved. By exploring sustainability and efficiency together, we examined how dominant discourses that privilege technical over social aspects in engineering can be replicated within an energy context. 
    more » « less
  3. Agrarian communities in the Peruvian Andes depend on local water resources that are threatened by both a changing climate and changes in the socio-politics of water allocation. A community’s local autonomy over water resources and its capacity to plan for a sustainable and secure water future depends, in part, on integrated local environmental knowledge (ILEK), which leverages and blends traditional and western scientific approaches to knowledge production. Over the course of a two-year collaborative water development project with the agrarian district of Zurite, we designed and implemented an applied model of socio-hydrology focused on the coproduction of knowledge among scientists, local knowledge-holders and students. Our approach leveraged knowledge across academic disciplines and cultures, trained students to be valued producers of knowledge, and, most importantly, integrated the needs and concerns of the community. The result is a community-based ILEK that informs sustainable land and water management and has the potential to increase local autonomy over water resources. Furthermore, the direct link between interdisciplinary water science and community benefits empowered students to pursue careers in water development. The long-term benefits of our approach support the inclusion of knowledge coproduction among scholars, students and, in particular, community members, in applied studies of socio-hydrology. 
    more » « less
  4. Food, energy and water (FEW) systems are inextricably linked, and thus, solutions to FEW nexus challenges, including water and food insecurity, require an interconnected science and policy approach framed in systems thinking. To drive these solutions, we developed an interdisciplinary, experiential graduate education program focused on innovations at the FEW nexus. As part of our program, PhD students complete a two-course sequence: (1) an experiential introduction to innovations at the FEW nexus and (2) a data practicum. The two courses are linked through an interdisciplinary FEW systems research project that begins during the first course and is completed at the end of the second course. Project deliverables include research manuscripts, grant proposals, policy memos, and outreach materials. Topics addressed in these projects include building electrification to reduce reliance on fossil fuels for heating, agrivoltaic farming to combat FEW vulnerabilities in the southwestern United States, assessment of food choices to influence sustainable dining practices, and understanding the complexities of FEW nexus research and training at the university level. Evaluation data were generated from our first three student cohorts (n = 33 students) using a mixed method, multi-informant evaluation approach, including the administration of an adapted version of a validated pre-post-survey to collect baseline and end-of-semester data. The survey assessed student confidence in the following example areas: communication, collaboration, and interdisciplinary research skills. Overall, students reported confidence growth in utilizing interdisciplinary research methods (e.g., synthesize the approaches and tools from multiple disciplines to evaluate and address a research problem), collaborating with range of professionals and communicating their research results to diverse audience. The growth in confidence in the surveyed areas aligned with the learning objectives for the two-course sequence, and the interdisciplinary project experience was continually improved based on student feedback. This two-course sequence represents one successful approach for educators to rethink the traditional siloed approach of training doctoral students working at the FEW nexus.

     
    more » « less
  5. SPV Lab is developing an innovation model for school-based citizen science that supports a networked approach to community-centered knowledge building. Students and teachers on each SPV Lab campus interact through sharing of data and lab reports, using an online platform to facilitate collaboration at a distance. Students not only learn, but also contribute to scientific knowledge of a new area of engineering research, i.e., agrivoltaics, and to their communities, providing social value through clean energy and food production. Creation of an SPV Lab citizen science network that supports and sustains student and community learning in the area of sustainable food and energy. 10 teachers were trained in 2022 and 10 more teachers were trained in 2023. The reach of these two cohorts is vast as they impact more than 30 students per year each. Conservatively this translated into nearly 1000 K-12 students gaining knowledge in the area of agriPV. The inclusion of the youth population in sustainability science and initiatives is necessary with increasing climate concerns and the push for cleaner energy. Introducing the younger populations to collaborative learning experiences about sustainable energy production is the goal of the Sonoran Photovoltaic Lab (SPV Lab). SPV Lab is a network of students, teachers, scientists, engineers, and community partners encouraging equitable, lasting, sustainable energy transitions. This group is working to increase photovoltaic systems and educate the next generation of energy researchers, knowledgeable citizens, and students to ensure that underserved students in Arizona have equitable opportunities to participate in experiential learning programs to gain a newfound understanding of sustainable systems and their impact on the environment. Members of the SPV Lab work collaboratively to achieve active engineering citizen science for K-12 students in agrivoltaics engineering research. Agrivoltaics is a mixed energy source where solar panels are raised above agricultural crops or livestock. This creates a symbiotic relationship between the photovoltaic panels and the plants or animals that are located underneath. A cooling microbiome is generated beneath the solar panels that reduces the temperature in the area, thereby providing a more hospitable home for plants while increasing panel efficiency while collecting useful energy. Due to the complexity of agriPV systems, students benefit most from working side-by-side with other students, teachers, and experts to reach innovative solutions. This project represents the importance of intergenerational collaboration as the main contributors to this project included a college professor, a college student, and a high school student, all of whom contributed equally to the success of this project. Students participate in the construction of the garden beds, mapping activities, data collection, and more. Through the introduction and implementation of these activities, the students have become more invested in the success of their agrivoltaics system and are eager to support the project. The mapping activity has led to a newly cultivated understanding of These activities promoting the significance of engineering sustainable energy solutions, as well as local food systems and healthy community relationships. In a pre-college resource exchange session, SPV Lab teachers and engineering education researchers, and at least one student representative, will co-present to represent our SPV Lab network. The team will share knowledge, resources, practices, and protocols that support SPV Lab students to (a) conduct community ethnography to inform crop choices, (b) collect data in the garden using simple digital tools and time series monitoring systems, (c) analyze and interpret data from their own gardens, and (d) share lab reports and analyze data across multiple campuses. Attendees will learn how to design and build agriPV garden spaces, build a network of collaborators, and conduct citizen science in their own regions. 
    more » « less