skip to main content

This content will become publicly available on December 21, 2023

Title: Meta-analysis reveals controls on oyster predation
Predators can have strong roles in structuring communities defined by foundation species. Accumulating evidence shows that predation on reef-building oysters can be intense and potentially compromise efforts to restore or conserve these globally decimated foundation species. However, understanding the controls on variation in oyster predation strength is impeded by inconsistencies in experimental methodologies. To address this challenge, we conducted the first meta-analysis to quantify the magnitude, uncertainty, and drivers of predator effects on oysters. We synthesized 384 predator-exclusion experiments from 49 peer-reviewed publications over 45 years of study (1977 to 2021). We characterized geographic and temporal patterns in oyster predation experiments, determined the strength of predator effects on oyster mortality and recruitment, and assessed how predation varies with oyster size, environmental conditions, the predator assemblage, and experimental design. Predators caused an average 4.3× increase in oyster mortality and 46% decrease in recruitment. Predation increased with oyster size and varied with predator identity and richness. Unexpectedly, we found no effects of latitude, tidal zone, or tidal range on predation strength. Predator effects differed with experiment type and tethering method, indicating the importance of experimental design and the caution warranted in extrapolating results. Our results quantify the importance of predation for oyster populations and suggest that consideration of the drivers of oyster predation in restoration and conservation planning may hasten recovery of these lost coastal foundation species.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in Marine Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Although species interactions are often assumed to be strongest at small spatial scales, they can interact with regional environmental factors to modify food web dynamics across biogeographic scales. The eastern oyster (Crassostrea virginica) is a widespread foundational species of both ecological and economic importance. The oyster and its associated assemblage of fish and macroinvertebrates is an ideal system to investigate how regional differences in environmental variables influence trophic interactions and food web structure. We quantified multiple environmental factors, oyster reef properties, associated species, and trophic guilds on intertidal oyster reefs within 10 estuaries along 900 km of the southeastern United States. Geographical gradients in fall water temperature and mean water depth likely influenced regional (i.e., the northern, central and southern sections of the SAB) variation in oyster reef food web structure. Variation in the biomass of mud crabs, an intermediate predator, was mostly (84.1%) explained by reefs within each site, and did not differ substantially among regions; however, regional variation in the biomass of top predators and of juvenile oysters also contributed to biogeographic variation in food web structure. In particular, region explained almost half (40.2%) of the variation in biomass of predators of blue crab, a top predator that was prevalent only in the central region where water depth was greater. Field experiments revealed that oyster mortality due to predation was greatest in the central region, suggesting spatial variation in the importance of trophic cascades. However, high oyster recruitment in the middle region probably compensates for this enhanced predation, potentially explaining why relatively less variation (17.9%) in oyster cluster biomass was explained by region. Region also explained over half of the variation in biomass of mud crab predators (55.2%), with the southern region containing almost an order of magnitude more biomass than the other two regions. In this region, higher water temperatures in the fall corresponded with higher biomass of fish that consume mud crabs and of fish that consume juvenile and forage fish, whereas biomas of their prey (mud crabs and juvenile and forage fish, respectively) was generally low in the southern region. Collectively, these results show how environmental gradients interact with trophic cascades to structure food webs associated with foundation species across biogeographic regions.

    more » « less
  2. Abstract

    When prey alter behavioral or morphological traits to reduce predation risk, they often incur fitness costs through reduced growth and reproduction as well as increased mortality that are known as nonconsumptive effects (NCEs). Environmental context and trophic structure can individually alter the strength of NCEs, yet the interactive influence of these contexts in natural settings is less understood. At six sites across 1000 km of the Southeastern Atlantic Bight (SAB), we constructed oyster reefs with one, two, or three trophic levels and evaluated the traits of focal juvenile oysters exposed to predation risk cues. We monitored environmental variables (water flow velocity, microalgal resources, and oyster larval recruitment) that may have altered how oysters respond to risk, and we also assessed the cost of trait changes to oyster mortality and growth when they were protected from direct predatory loss. Regardless of trophic structure, we found that oyster shell strength and natural oyster recruitment peaked at the center of the region. This high recruitment negated the potential for NCEs by smothering and killing the focal oysters. Also independent of trophic structure, focal oysters grew the most at the northernmost site. In contrast to, and perhaps because of, these strong environmental effects, the oyster traits of condition index and larval recruitment were only suppressed by the trophic treatment with a full complement of risk cues from intermediate and top predators at just the southernmost site. But at this same site, statistically significant NCEs on oyster growth and mortality were not detected. More strikingly, our study demonstrated environmental gradients that differentially influence oysters throughout the SAB. In particular, the results of our trophic manipulation experiment across these gradients suggest that in the absence of predation, environmental differences among sites may overwhelm the influence of NCEs on prey traits and population dynamics.

    more » « less
  3. Abstract

    Mesopredator release following top predator loss may reduce biodiversity and harm foundation species. We investigated the potential for moderate environmental changes to trigger mesopredator release by disrupting the foraging ability of top predators without affecting their abundance by performing an in situ experiment designed to isolate the magnitude of mesopredator effects on oyster reefs (Crassostrea virginica). In estuaries, fishes occupy upper trophic levels. Most are visual foragers and become less effective predators in high turbidity. Communities were 10% more diverse, fish predation was 20% higher, and oyster recruitment four times higher in low turbidity. Crab mesopredators were 10% larger and 260% more abundant in high turbidity. Caging treatments to exclude mesopredators significantly affected communities in high but not low turbidity. Oysters had 150% stronger shells in turbid areas, a known response to crabs that was indicative of higher crab abundance. These findings indicated that increased turbidity attenuated fish foraging ability without disrupting the foraging ability of mesopredators (e.g., crabs) that forage by chemoreception. Larger and more numerous crab mesopredators significantly affected oyster reef community structure as well as the survival and growth of oysters in turbid environments. In environments where apex predators and mesopredators utilize different sensory mechanisms, sensory‐mediated mesopredator release may occur when conditions affect the foraging ability of higher order predators but not their prey.

    more » « less
  4. Abstract

    The ability to predict how predators structure ecosystems has been shown to depend on identifying both consumptive effects (CEs) and nonconsumptive effects (NCEs) of predators on prey fitness. Prey populations may also be affected by interactions between multiple predators across life stages of the prey and by environmental factors such as disturbance. However, the intersection of these multiple drivers of prey dynamics has yet to be empirically evaluated. We addressed this knowledge gap using eastern oysters (Crassostrea virginica), a species known to suffer NCEs, as the focal prey. Over 4 months, we manipulated orthogonally the life stage (none, juvenile, adult, or both) at which oysters experienced simulated predation (CE) and exposure to olfactory cues of a juvenile oyster predator (crab), adult predator (conch), sequentially the crab and then the conch, or none. We replicated this experiment at three sites along an environmental gradient in a Florida (USA) estuary. For both juvenile and adult oysters, survival was reduced solely by CEs, and variation in growth was best explained by among‐site variation in water flow, with a much smaller and negative effect of predator cue. Adults exposed to conch cue exhibited reduced growth (an NCE), but this effect was outweighed by a positive CE on growth: Surviving oysters grew faster at lower densities. Finally, conch cue reduced larval settlement (another NCE), but this was swamped by among‐site variation in larval supply. This research highlights how strong environmental gradients and predator CEs may outweigh the influence of NCEs, even in prey known to respond to predator cues. These findings serve as a cautionary tale for the importance of evaluating NCE processes over temporal scales and across environmental gradients relevant to prey demography.

    more » « less
  5. We investigated how recent changes in the distribution and abundance of a fouling organism affected the strength of interactions between a commercially important foundation species and a common predator. Increases in the abundance of boring sponges that bioerode the calcified shells of oysters and other shelled organisms have been attributed to increased salinization of estuarine ecosystems. We tested the hypothesis that fouling by boring sponges will change the interaction strength between oysters and a common predator (stone crabs). We generated five oyster density treatments crossed with two sponge treatments (sponge and no sponge). We contrasted the interaction strength between stone crabs and fouled and non-fouled oysters by comparing the parameters of fitted functional response curves based on Rogers random predation model. We found that fouled oysters suffered higher predation from stone crabs, and that the increased predation risk stemmed from a reduction in the handling time needed to consume the fouled oysters. These findings highlight the importance of understanding the effects of abiotic changes on both the composition of ecological communities, and on the strengths of direct and indirect interactions among species. Global climate change is altering local ecosystems in complex ways, and the success of restoration, management, and mitigation strategies for important species requires a better appreciation for how these effects cascade through ecosystems.

    more » « less