skip to main content


Title: Exploring the limits of ultracold atoms in space
Abstract Existing space-based cold atom experiments have demonstrated the utility of microgravity for improvements in observation times and for minimizing the expansion energy and rate of a freely evolving coherent matter wave. In this paper we explore the potential for space-based experiments to extend the limits of ultracold atoms utilizing not just microgravity, but also other aspects of the space environment such as exceptionally good vacuums and extremely cold temperatures. The tantalizing possibility that such experiments may one day be able to probe physics of quantum objects with masses approaching the Planck mass is discussed.  more » « less
Award ID(s):
2016245
NSF-PAR ID:
10424745
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Quantum Science and Technology
Volume:
8
Issue:
2
ISSN:
2058-9565
Page Range / eLocation ID:
024004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fluid interfaces significantly influence the dynamics of protein solutions, effects that can be isolated by performing experiments in microgravity, greatly reducing the amount of solid boundaries present, allowing air-liquid interfaces to become dominant. This investigation examined the effects of protein concentration on interfacial shear-induced fibrillization of insulin in microgravity within a containerless biochemical reactor, the ring-sheared drop (RSD), aboard the international space station (ISS). Human insulin was used as a model amyloidogenic protein for studying protein kinetics with applications to in situ pharmaceutical production, tissue engineering, and diseases such as Alzheimer’s, Parkinson’s, infectious prions, and type 2 diabetes. Experiments investigated three main stages of amyloidogenesis: nucleation studied by seeding native solutions with fibril aggregates, fibrillization quantified using intrinsic fibrillization rate after fitting measured solution intensity to a sigmoidal function, and gelation observed by detection of solidification fronts. Results demonstrated that in surface-dominated amyloidogenic protein solutions: seeding with fibrils induces fibrillization of native protein, intrinsic fibrillization rate is independent of concentration, and that there is a minimum fibril concentration for gelation with gelation rate and rapidity of onset increasing monotonically with increasing protein concentration. These findings matched well with results of previous studies within ground-based analogs.

     
    more » « less
  2. Plants have been recognized as key components of bioregenerative life support systems for space exploration, and many experiments have been carried out to evaluate their adaptability to spaceflight. Unfortunately, few of these experiments have involved monocot plants, which constitute most of the crops used on Earth as sources of food, feed, and fiber. To better understand the ability of monocot plants to adapt to spaceflight, we germinated and grew Brachypodium distachyon seedlings of the Bd21, Bd21-3, and Gaz8 accessions in a customized growth unit on the International Space Station, along with 1-g ground controls. At the end of a 4-day growth period, seedling organ’s growth and morphologies were quantified, and root and shoot transcriptomic profiles were investigated using RNA-seq. The roots of all three accessions grew more slowly and displayed longer root hairs under microgravity conditions relative to ground control. On the other hand, the shoots of Bd21-3 and Gaz-8 grew at similar rates between conditions, whereas those of Bd21 grew more slowly under microgravity. The three Brachypodium accessions displayed dramatically different transcriptomic responses to microgravity relative to ground controls, with the largest numbers of differentially expressed genes (DEGs) found in Gaz8 (4527), followed by Bd21 (1353) and Bd21-3 (570). Only 47 and six DEGs were shared between accessions for shoots and roots, respectively, including DEGs encoding wall-associated proteins and photosynthesis-related DEGs. Furthermore, DEGs associated with the “Oxidative Stress Response” GO group were up-regulated in the shoots and down-regulated in the roots of Bd21 and Gaz8, indicating that Brachypodium roots and shoots deploy distinct biological strategies to adapt to the microgravity environment. A comparative analysis of the Brachypodium oxidative-stress response DEGs with the Arabidopsis ROS wheel suggests a connection between retrograde signaling, light response, and decreased expression of photosynthesis-related genes in microgravity-exposed shoots. In Gaz8, DEGs were also found to preferentially associate with the “Plant Hormonal Signaling” and “MAP Kinase Signaling” KEGG pathways. Overall, these data indicate that Brachypodium distachyon seedlings exposed to the microgravity environment of ISS display accession- and organ-specific responses that involve oxidative stress response, wall remodeling, photosynthesis inhibition, expression regulation, ribosome biogenesis, and post-translational modifications. The general characteristics of these responses are similar to those displayed by microgravity-exposed Arabidopsis thaliana seedlings. However, organ- and accession-specific components of the response dramatically differ both within and between species. These results suggest a need to directly evaluate candidate-crop responses to microgravity to better understand their specific adaptability to this novel environment and develop cultivation strategies allowing them to strive during spaceflight. 
    more » « less
  3. The phase-field method is an attractive computational tool for simulating microstructural evolution during phase separation, including solidification and spinodal decomposition. However, the high computational cost associated with solving phase-field equations currently limits our ability to comprehend phase transformations. This article reports a novel phase-field emulator based on the tensor decomposition of the evolving microstructures and their corresponding two-point correlation functions to predict microstructural evolution at arbitrarily small time scales that are otherwise nontrivial to achieve using traditional phase-field approaches. The reported technique is based on obtaining a low-dimensional representation of the microstructures via tensor decomposition, and subsequently, predicting the microstructure evolution in the low-dimensional space using Gaussian process regression (GPR). Once we obtain the microstructure prediction in the low-dimensional space, we employ a hybrid input–output phase-retrieval algorithm to reconstruct the microstructures. As proof of concept, we present the results on microstructure prediction for spinodal decomposition, although the method itself is agnostic of the material parameters. Results show that we are able to predict microstructure evolution sequences that closely resemble the true microstructures (average normalized mean square of 6.78×10^−7) at time scales half of that employed in obtaining training data. Our data-driven microstructure emulator opens new avenues to predict the microstructural evolution by leveraging phase-field simulations and physical experimentation where the time resolution is often quite large due to limited resources and physical constraints, such as the phase coarsening experiments previously performed in microgravity. 
    more » « less
  4. null (Ed.)
    A numerical study is pursued to investigate the aerodynamics and thermal interactions between a spreading flame and the surrounding walls as well as their effects on fire behaviors. This is done in support of upcoming microgravity experiments aboard the International Space Station. For the numerical study, a three-dimensional transient Computational Fluid Dynamics combustion model is used to simulate concurrent-flow flame spread over a thin solid sample in a narrow flow duct. The height of the flow duct is the main parameter. The numerical results predict a quenching height for the flow duct below which the flame fails to spread. For duct heights sufficiently larger than the quenching height, the flame reaches a steady spreading state before the sample is fully consumed. The flame spread rate and the pyrolysis length at steady state first increase and then decrease when the flow duct height decreases. The detailed gas and solid profiles show that flow confinement has competing effects on the flame spread process. On one hand, it accelerates flow during thermal expansion from combustion, intensifying the flame. On the other hand, increasing flow confinement reduces the oxygen supply to the flame and increases conductive heat loss to the walls, both of which weaken the flame. These competing effects result in the aforementioned non-monotonic trend of flame spread rate as duct height varies. This work relates to upcoming microgravity experiments, in which flat thin samples will be burned in a low-speed concurrent flow using a small flow duct aboard the International Space Station. Two baffles will be installed parallel to the fuel sample (one on each side of the sample) to create an effective reduction in the height of the flow duct. The concept and setup of the experiments are presented in this work. 
    more » « less
  5. Abstract

    As interest in space exploration rises, there is a growing need to quantify the impact of microgravity on the growth, survival, and adaptation of microorganisms, including those responsible for astronaut illness. Motility is a key microbial behavior that plays important roles in nutrient assimilation, tissue localization and invasion, pathogenicity, biofilm formation, and ultimately survival. Very few studies have specifically looked at the effects of microgravity on the phenotypes of microbial motility. However, genomic and transcriptomic studies give a broad general picture of overall gene expression that can be used to predict motility phenotypes based upon selected genes, such as those responsible for flagellar synthesis and function and/or taxis. In this review, we focus on specific strains of Gram-negative bacteria that have been the most studied in this context. We begin with a discussion of Earth-based microgravity simulation systems and how they may affect the genes and phenotypes of interest. We then summarize results from both Earth- and space-based systems showing effects of microgravity on motility-related genes and phenotypes.

     
    more » « less