skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Canonical Motor Microcircuit for Control of a Rat Hindlimb
This work focuses on creating a controller for the hip joint of a rat using a canonical motor microcircuit. It is thought that this circuit acts to modulate motor neuron activity at the output stage. We first created a simplified biomechanical model of a rat hindlimb along with a neural model of the circuit in a software tool called Animatlab. The canonical motor microcircuit controller was then tuned such that the trajectory of the hip joint was similar to that of a rat during locomotion. This work describes a successful method for hand-tuning the various synaptic parameters and the influence of Ia feedback on motor neuron activity. The neuromechanical model will allow for further analysis of the circuit, specifically, the function and significance of Ia feedback and Renshaw cells.  more » « less
Award ID(s):
2015317
PAR ID:
10424819
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biomimetic and Biohybrid Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work explored synaptic strengths in a computational neuroscience model of a controller for the hip joint of a rat which consists of Ia interneurons, Renshaw cells, and the associated motor neurons. This circuit has been referred to as the Canonical Motor Microcircuit (CMM). It is thought that the CMM acts to modulate motor neuron activity at the output stage. We first created a biomechanical model of a rat hindlimb consisting of a pelvis, femur, shin, foot, and flexor-extensor muscle pairs modeled with a Hill muscle model. We then modeled the CMM using non-spiking leaky-integrator neural models connected with conductance-based synapses. To tune the parameters in the network, we implemented an automated approach for parameter search using the Markov chain Monte Carlo (MCMC) method to solve a parameter estimation problem in a Bayesian inference framework. As opposed to traditional optimization techniques, the MCMC method identifies probability densities over the multidimensional space of parameters. This allows us to see a range of likely parameters that produce model outcomes consistent with animal data, determine if the distribution of likely parameters is uni- or multi-modal, as well as evaluate the significance and sensitivity of each parameter. This approach will allow for further analysis of the circuit, specifically, the function and significance of Ia feedback and Renshaw cells. 
    more » « less
  2. This work explores a method for analytically computing the infinites-imal phase response curves (iPRCs) of a synthetic nervous system (SNS) for a hybrid exoskeleton. Phase changes, in response to perturbations, revealed by the iPRCs, could assist in tuning the strength and locations of sensory pathways. We model the SNS exoskeleton controller in a reduced form using a state-space rep-resentation that interfaces neural and motor dynamics. The neural dynamics are modeled after non-spiking neurons configured as a central pattern generator (CPG), while the motor dynamics model a power unit for the hip joint of the exoskeleton. Within the dynamics are piecewise functions and hard boundaries (i.e. “sliding conditions”), which cause discontinuities in the vector field at their boundaries. The analytical methods for computing the iPRCs used in this work apply the adjoint equation method with jump conditions that are able to account for these discontinuities. To show the accuracy and speed provided by these methods, we compare the analytical and brute-force solutions. 
    more » « less
  3. Abstract Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage theDrosophilasong production system3to investigate the role of several neuron types4–7in song patterning near versus far from the female fly. Male flies sing ‘simple’ trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9can be combined to enable circuit flexibility required for dynamic communication. 
    more » « less
  4. High-performance actuators are crucial to enable mechanical versatility of wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to compromise bandwidth to improve compliance (i.e., backdrivability). We describe the design and human-robot interaction modeling of a portable hip exoskeleton based on our custom quasi-direct drive (QDD) actuation (i.e., a high torque density motor with low ratio gear). We also present a model-based performance benchmark comparison of representative actuators in terms of torque capability, control bandwidth, backdrivability, and force tracking accuracy. This paper aims to corroborate the underlying philosophy of “design for control“, namely meticulous robot design can simplify control algorithms while ensuring high performance. Following this idea, we create a lightweight bilateral hip exoskeleton to reduce joint loadings during normal activities, including walking and squatting. Experiments indicate that the exoskeleton is able to produce high nominal torque (17.5 Nm), high backdrivability (0.4 Nm backdrive torque), high bandwidth (62.4 Hz), and high control accuracy (1.09 Nm root mean square tracking error, 5.4% of the desired peak torque). Its controller is versatile to assist walking at different speeds and squatting. This work demonstrates performance improvement compared with state-of-the-art exoskeletons. 
    more » « less
  5. Lower-limb exoskeletons have the potential to transform the way we move1,2,3,4,5,6,7,8,9,10,11,12,13,14, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We introduce a task-agnostic controller that assists the user on the basis of instantaneous estimates of lower-limb biological joint moments from a deep neural network. By estimating both hip and knee moments in-the-loop, our approach provided multi-joint, coordinated assistance through our autonomous, clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic locomotion to unstructured tasks (for example, passive meandering and high-speed lateral cutting), the network accurately estimated hip and knee moments with an average R2 of 0.83 relative to ground truth. Further, our approach significantly outperformed a best-case task classifier-based method constructed from splines and impedance parameters. When tested on ten activities (including level walking, running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly reduced user energetics (metabolic cost or lower-limb biological joint work depending on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without any manual controller modifications among activities. Thus, this task-agnostic controller can enable exoskeletons to aid users across a broad spectrum of human activities, a necessity for real-world viability. 
    more » « less