skip to main content


Title: Canonical Motor Microcircuit for Control of a Rat Hindlimb
This work focuses on creating a controller for the hip joint of a rat using a canonical motor microcircuit. It is thought that this circuit acts to modulate motor neuron activity at the output stage. We first created a simplified biomechanical model of a rat hindlimb along with a neural model of the circuit in a software tool called Animatlab. The canonical motor microcircuit controller was then tuned such that the trajectory of the hip joint was similar to that of a rat during locomotion. This work describes a successful method for hand-tuning the various synaptic parameters and the influence of Ia feedback on motor neuron activity. The neuromechanical model will allow for further analysis of the circuit, specifically, the function and significance of Ia feedback and Renshaw cells.  more » « less
Award ID(s):
2015317
PAR ID:
10424819
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Biomimetic and Biohybrid Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work explored synaptic strengths in a computational neuroscience model of a controller for the hip joint of a rat which consists of Ia interneurons, Renshaw cells, and the associated motor neurons. This circuit has been referred to as the Canonical Motor Microcircuit (CMM). It is thought that the CMM acts to modulate motor neuron activity at the output stage. We first created a biomechanical model of a rat hindlimb consisting of a pelvis, femur, shin, foot, and flexor-extensor muscle pairs modeled with a Hill muscle model. We then modeled the CMM using non-spiking leaky-integrator neural models connected with conductance-based synapses. To tune the parameters in the network, we implemented an automated approach for parameter search using the Markov chain Monte Carlo (MCMC) method to solve a parameter estimation problem in a Bayesian inference framework. As opposed to traditional optimization techniques, the MCMC method identifies probability densities over the multidimensional space of parameters. This allows us to see a range of likely parameters that produce model outcomes consistent with animal data, determine if the distribution of likely parameters is uni- or multi-modal, as well as evaluate the significance and sensitivity of each parameter. This approach will allow for further analysis of the circuit, specifically, the function and significance of Ia feedback and Renshaw cells. 
    more » « less
  2. This work explores a method for analytically computing the infinites-imal phase response curves (iPRCs) of a synthetic nervous system (SNS) for a hybrid exoskeleton. Phase changes, in response to perturbations, revealed by the iPRCs, could assist in tuning the strength and locations of sensory pathways. We model the SNS exoskeleton controller in a reduced form using a state-space rep-resentation that interfaces neural and motor dynamics. The neural dynamics are modeled after non-spiking neurons configured as a central pattern generator (CPG), while the motor dynamics model a power unit for the hip joint of the exoskeleton. Within the dynamics are piecewise functions and hard boundaries (i.e. “sliding conditions”), which cause discontinuities in the vector field at their boundaries. The analytical methods for computing the iPRCs used in this work apply the adjoint equation method with jump conditions that are able to account for these discontinuities. To show the accuracy and speed provided by these methods, we compare the analytical and brute-force solutions. 
    more » « less
  3. This paper presents a new model and phase-variable controller for sit-to-stand motion in above-knee amputees. The model captures the effect of work done by the sound side and residual limb on the prosthesis, while modeling only the prosthetic knee and ankle with a healthy hip joint that connects the thigh to the torso. The controller is parametrized by a biomechanical phase variable rather than time and is analyzed in simulation using the model. We show that this controller performs well with minimal tuning, under a range of realistic initial conditions and biological parameters such as height and body mass. The controller generates kinematic trajectories that are comparable to experimentally observed trajectories in non-amputees. Furthermore, the torques commanded by the controller are consistent with torque profiles and peak values of normative human sit-to-stand motion. Rise times measured in simulation and in non-amputee experiments are also similar. Finally, we compare the presented controller with a baseline proportional-derivative controller demonstrating the advantages of the phase-based design over a set-point based design. 
    more » « less
  4. High-performance actuators are crucial to enable mechanical versatility of wearable robots, which are required to be lightweight, highly backdrivable, and with high bandwidth. State-of-the-art actuators, e.g., series elastic actuators (SEAs), have to compromise bandwidth to improve compliance (i.e., backdrivability). We describe the design and human-robot interaction modeling of a portable hip exoskeleton based on our custom quasi-direct drive (QDD) actuation (i.e., a high torque density motor with low ratio gear). We also present a model-based performance benchmark comparison of representative actuators in terms of torque capability, control bandwidth, backdrivability, and force tracking accuracy. This paper aims to corroborate the underlying philosophy of “design for control“, namely meticulous robot design can simplify control algorithms while ensuring high performance. Following this idea, we create a lightweight bilateral hip exoskeleton to reduce joint loadings during normal activities, including walking and squatting. Experiments indicate that the exoskeleton is able to produce high nominal torque (17.5 Nm), high backdrivability (0.4 Nm backdrive torque), high bandwidth (62.4 Hz), and high control accuracy (1.09 Nm root mean square tracking error, 5.4% of the desired peak torque). Its controller is versatile to assist walking at different speeds and squatting. This work demonstrates performance improvement compared with state-of-the-art exoskeletons. 
    more » « less
  5. Abstract

    Tendons must be able to withstand the forces generated by muscles and not fail. Accordingly, a previous comparative analysis across species has shown that tendon strength (i.e., failure stress) increases for larger species. In addition, the elastic modulus increases proportionally to the strength, demonstrating that the two properties co-vary. However, some species may need specially adapted tendons to support high performance motor activities, such as sprinting and jumping. Our objective was to determine if the tendons of kangaroo rats (k-rat), small bipedal animals that can jump as high as ten times their hip height, are an exception to the linear relationship between elastic modulus and strength. We measured and compared the material properties of tendons from k-rat ankle extensor muscles to those of similarly sized white rats. The elastic moduli of k-rat and rat tendons were not different, but k-rat tendon failure stresses were much larger than the rat values (nearly 2 times larger), as were toughness (over 2.5 times larger) and ultimate strain (over 1.5 times longer). These results support the hypothesis that the tendons from k-rats are specially adapted for high motor performance, and k-rat tendon could be a novel model for improving tissue engineered tendon replacements.

     
    more » « less