skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The embryology, metamorphosis, and muscle development of Schizocardium karankawa sp. nov. (Enteropneusta) from the Gulf of Mexico
Abstract Schizocardium karankawa  sp. nov. has been collected from subtidal muds of the Laguna Madre, Texas, and the Mississippi coast, Gulf of Mexico. The Texas population is reproductive from early February to mid-April. Gametes are liberated by a small incision in a gonad. Oocyte germinal vesicle breakdown is increased in the presence of sperm, and the highest fertilization success was in the artificial seawater Jamarin U. Manually dechorionated embryos develop normally. Development was asynchronous via a tornaria larva, metamorphosis and maintained to the juvenile worm 6 gill-pore stage. Phalloidin-labeled late-stage tornaria revealed retractor muscles that connect the pericardial sac with the apical tuft anteriorly, the oesophagus ventrally, and muscle cells of the early mesocoels. The muscle development of early juvenile worms began with dorso-lateral trunk muscles, lateral trunk bands, and sphincters around the gill pores and anus. Adult worms are characterized by a stomochord that bifurcates anteriorly into paired vermiform processes, gill bars that extend almost the entire dorsal to ventral branchial region resulting in a narrow ventral hypobranchial ridge, and an elaborate epibranchial organ with six zones of discrete cell types. The trunk has up to three rows of liver sacs, and lateral gonads. The acorn worm evo-devo model species  Saccoglossus kowalevskii ,  Ptychodera flava , and  Schizocardium   californicum  are phylogenetically distant with disparate life histories. S. karnakawa  from  S.   californicum  are phylogenetically close, and differences between them that become apparent as adult worms include the number of gill pores and hepatic sacs, and elaborations of the heart–kidney–stomochord complex. An important challenge for evolutionary developmental biology is to form links from phylogenetically distant and large-scale differences to phylogenetically close and small-scale differences. This description of the embryology, development, and adult morphology of S. karankawa permits investigations into how acorn worm development evolves at fine scales.  more » « less
Award ID(s):
1846174
PAR ID:
10424839
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
EvoDevo
Volume:
14
Issue:
1
ISSN:
2041-9139
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background: Skeletal muscle in the trunk derives from the somites, paired segments of paraxial mesoderm. Whereas axial musculature develops within the somite, appendicular muscle develops following migration of muscle precursors into lateral plate mesoderm. The development of muscles bridging axial and appendicular systems appears mixed. Results: We examine development of three migratory muscle precursor-derived muscles in zebrafish: the sternohyoideus (SH), pectoral fin (PF), and posterior hypaxial (PHM) muscles. We show there is an anterior to posterior gradient to the developmental gene expression and maturation of these three muscles. SH muscle precursors exhibit a long delay between migration and differentiation, PF muscle precursors exhibit a moderate delay in differentiation, and PHM muscle precursors show virtually no delay between migration and differentiation. Using lineage tracing, we show that lateral plate contribution to the PHM muscle is minor, unlike its known extensive contribution to the PF muscle and absence in the ventral extension of axial musculature. Conclusions: We propose that PHM development is intermediate between a migratory muscle mode and an axial muscle mode of development, wherein the PHM differentiates after a very short migration of its precursors and becomes more anterior primarily by elongation of differentiated muscle fibers. 
    more » « less
  2. For decades it has been established that head muscle development differs from trunk muscle development. Similarly known, even though not in such detail, is that different subgroups of head muscles develop dependent on different underlying gene regulatory networks. Even less well studied are the tissue interactions during the developmental processes. Muscles derived from pharyngeal arch mesoderm depend on interactions with endoderm and neural crest cells, and, to a minor extent, ectodermal cues. Extraocular eye muscles respond to a mix of signals from surrounding mesoderm, but also neural crest cells; however, they are independent of endodermal cues. Head muscles derived from occipital paraxial mesoderm depend on tissue interactions similar to pharyngeal arch muscles but have a different migration trajectory. While the pharyngeal arch mesodermal cells and neural crest cells largely migrate from dorsal to ventral, the occipital paraxial mesodermal cells migrate from dorsal to ventral and from posterior to anterior. During the migration these cells proliferate and even start to differentiate, while pharyngeal mesodermal cells begin the differentiation process after reaching their respective pharyngeal arches. Here we present an overview of tissue interactions during the development of different head muscle populations, highlighting general concepts and main differences. Topic Category: Neural Crest, Placodes and Craniofacial Development Keywords: Craniofacial muscles, Myogenesis Funding or Support Information: NSF #2000005 to JMZC 
    more » « less
  3. Selection for increased muscle mass in domestic turkeys has resulted in muscles twice the size of those found in wild turkeys. This study characterizes muscle structural changes as well as functional differences in muscle performance associated with selection for increased muscle mass. We compared peak isometric force production, whole muscle and individual fiber cross-sectional area (CSA), connective tissue collagen concentration and structure of the lateral gastrocnemius (LG) muscle in wild and adult domestic turkeys. We also explored changes with age between juvenile and adult domestic turkeys. We found that the domestic turkey’s LG muscle can produce the same force per cross-sectional area as a wild turkey; however, due to scaling, domestic adults produce less force per unit body mass. Domestic turkey muscle fibers were slightly smaller in CSA (3802 ± 2223 μm2) than those of the wild turkey (4014 ± 1831 μm2, p = 0.013), indicating that the absolutely larger domestic turkey muscles are a result of an increased number of smaller fibers. Collagen concentration in domestic turkey muscle (4.19 ± 1.58 μg hydroxyproline/mg muscle) was significantly lower than in the wild turkeys (6.23 ± 0.63 μg/mg, p = 0.0275), with visible differences in endomysium texture, observed via scanning electron microscopy. Selection for increased muscle mass has altered the structure of the LG muscle; however, scaling likely contributes more to hind limb functional differences observed in the domestic turkey. 
    more » « less
  4. ABSTRACT Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero‐posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome‐affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur‐bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution. 
    more » « less
  5. ABSTRACT Multiarticular muscle systems are widespread across vertebrates, including in their necks, digits, tails and trunks. In secondarily limbless tetrapods, the multiarticular trunk muscles power nearly all behaviors. Using snakes as a study system, we previously used anatomical measurements and mathematical modeling to derive an equation relating multiarticular trunk muscle shortening to postural change. However, some snake trunk muscles have long, thin tendinous connections, raising the possibility of elastic energy storage, which could lead to a decoupling of muscle length change from joint angle change. The next step, therefore, is to determine whether in vivo muscle shortening produces the postural changes predicted by mathematical modeling. A departure from predictions would implicate elastic energy storage. To test the relationship between muscle strain and posture in vivo, we implanted radio-opaque metal beads in three muscles of interest in four corn snakes (Pantherophis guttatus), then recorded X-ray videos to directly measure muscle shortening and vertebral column curvature during locomotion. Our in vivo results produced evidence that elastic energy storage does not play a substantial role in corn snake lateral undulation or tunnel concertina locomotion. The ability to predict muscle shortening directly from observed posture will facilitate future work. Moreover, the generality of our equation, which uses anatomical values that can be measured in many types of animals, means that our framework for understanding multiarticular muscle function can be applied in numerous study systems to provide a stronger mechanistic understanding of organismal function. 
    more » « less