skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design principles for the synthesis of platinum–cobalt intermetallic nanoparticles for electrocatalytic applications
As the development of polymer electrolyte membrane fuel cells (PEMFCs) has sped up in recent years, producing active and durable electrocatalysts has become an increasingly important technical challenge. Platinum–cobalt (Pt–Co) alloy electrocatalyst has been commercially applied to hydrogen-powered fuel cell vehicles, and their intermetallic forms promise better durability, which is crucial to satisfy the 8000 h lifetime target of heavy-duty vehicles and other transportation options. In this feature article, we first present the atomically ordered structures of Pt–Co intermetallic, then discuss the thermodynamic and kinetic driving forces for making the PtCo-based intermetallic nanoparticles with desired structural attributes, followed by recent examples to illustrate how to achieve better control in composition, size, and shape. Discussion on the relationship between the key structural features and catalytic performance is focused on the application of Pt–Co intermetallic nanostructures as oxygen reduction reaction (ORR) electrocatalysts for hydrogen-powered PEMFCs. We emphasize specifically the importance of intermetallic structures for enhancing the durability and summarize the characterizations of their electrocatalytic performance in both three-electrode system and full cell studies. Finally, we provide our perspectives on the design, synthesis, characterization, and property studies of Pt–Co intermetallic nanoparticles as ORR electrocatalysts. This article should provide a new understanding on the design of ORR electrocatalytic applications using this class of intermetallics.  more » « less
Award ID(s):
2055734
PAR ID:
10424850
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Communications
Volume:
59
Issue:
33
ISSN:
1359-7345
Page Range / eLocation ID:
4852 to 4871
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate with atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions. 
    more » « less
  2. Designing high-performance nonprecious electrocatalysts to replace Pt for the oxygen reduction reaction (ORR) has been a key challenge for advancing fuel cell technologies. Here, we report a systematic study of 15 different AB 2 O 4 /C spinel nanoparticles with well-controlled octahedral morphology. The 3 most active ORR electrocatalysts were MnCo 2 O 4 /C, CoMn 2 O 4 /C, and CoFe 2 O 4 /C. CoMn 2 O 4 /C exhibited a half-wave potential of 0.89 V in 1 M KOH, equal to the benchmark activity of Pt/C, which was ascribed to charge transfer between Co and Mn, as evidenced by X-ray absorption spectroscopy. Scanning transmission electron microscopy (STEM) provided atomic-scale, spatially resolved images, and high-energy-resolution electron-loss near-edge structure (ELNES) enabled fingerprinting the local chemical environment around the active sites. The most active MnCo 2 O 4 /C was shown to have a unique Co-Mn core–shell structure. ELNES spectra indicate that the Co in the core is predominantly Co 2.7+ while in the shell, it is mainly Co 2+ . Broader Mn ELNES spectra indicate less-ordered nearest oxygen neighbors. Co in the shell occupies mainly tetrahedral sites, which are likely candidates as the active sites for the ORR. Such microscopic-level investigation probes the heterogeneous electronic structure at the single-nanoparticle level, and may provide a more rational basis for the design of electrocatalysts for alkaline fuel cells. 
    more » « less
  3. Abstract The commercialization of proton exchange membrane fuel cells (PEMFCs) relies on highly active and stable electrocatalysts for oxygen reduction reaction (ORR) in acid media. The most successful catalysts for this reaction are nanostructured Pt‐alloy with a Pt‐skin. The synthesis of ultrasmall and ordered L10‐PtCo nanoparticle ORR catalysts further doped with a few percent of metals (W, Ga, Zn) is reported. Compared to commercial Pt/C catalyst, the L10‐W‐PtCo/C catalyst shows significant improvement in both initial activity and high‐temperature stability. The L10‐W‐PtCo/C catalyst achieves high activity and stability in the PEMFC after 50 000 voltage cycles at 80 °C, which is superior to the DOE 2020 targets. EXAFS analysis and density functional theory calculations reveal that W doping not only stabilizes the ordered intermetallic structure, but also tunes the Pt‐Pt distances in such a way to optimize the binding energy between Pt and O intermediates on the surface. 
    more » « less
  4. Developing low platinum-group-metal (PGM) catalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane fuel cells (PEMFCs) for heavy- duty vehicles (HDVs) remains a great challenge due to the highly demanded power density and long-term durability. This work explores the possible synergistic effect between single Mn site-rich carbon (MnSA-NC) and Pt nanoparticles, aiming to improve intrinsic activity and stability of PGM catalysts. Density functional theory (DFT) calculations predicted a strong coupling effect between Pt and MnN4 sites in the carbon support, strengthening their interactions to immobilize Pt nanoparticles during the ORR. The adjacent MnN4 sites weaken oxygen adsorption at Pt to enhance intrinsic activity. Well-dispersed Pt (2.1 nm) and ordered L12-Pt3Co nanoparticles (3.3 nm) were retained on the MnSA-NC support after indispensable high-temperature annealing up to 800 °C, suggesting enhanced thermal stability. Both PGM catalysts were thoroughly studied in membrane electrode assemblies (MEAs), showing compelling performance and durability. The Pt@MnSA-NC catalyst achieved a mass activity (MA) of 0.63 A mgPt−1 at 0.9 ViR‐free and maintained 78% of its initial performance after a 30,000-cycle accelerated stress test (AST). The L12-Pt3Co@MnSA-NC catalyst accomplished a much higher MA of 0.91 A mgPt−1 and a current density of 1.63 A cm−2 at 0.7 V under traditional light-duty vehicle (LDV) H2−air conditions (150 kPaabs and 0.10 mgPt cm−2). Furthermore, the same catalyst in an HDV MEA (250 kPaabs and 0.20 mgPt cm−2) delivered 1.75 A cm−2 at 0.7 V, only losing 18% performance after 90,000 cycles of the AST, demonstrating great potential to meet the DOE targets. 
    more » « less
  5. Alkaline fuel cells enable the use of earth-abundant elements to replace Pt but are hindered by the sluggish kinetics of the hydrogen oxidation reaction (HOR) in alkaline media. Precious metal–free HOR electrocatalysts need to overcome two major challenges: their low intrinsic activity from too strong a hydrogen-binding energy and poor durability due to rapid passivation from metal oxide formation. Here, we designed a Ni-based electrocatalyst with a 2-nm nitrogen-doped carbon shell (Ni@CN x ) that serves as a protection layer and significantly enhances HOR kinetics. A Ni@CN x anode, paired with a Co−Mn spinel cathode, exhibited a record peak power density of over 200 mW/cm 2 in a completely precious metal–free alkaline membrane fuel cell. Ni@CN x exhibited superior durability when compared to a Ni nanoparticle catalyst due to the enhanced oxidation resistance provided by the CN x layer. Density functional theory calculations suggest that graphitic carbon layers on the surface of the Ni nanoparticles lower the H binding energy to Ni, bringing it closer to the previously predicted value for optimal HOR activity, and single Ni atoms anchored to pyridinic or pyrrolic N defects of graphene can serve as the HOR active sites. The strategy described here marks a milestone in electrocatalyst design for low-cost hydrogen fuel cells and other energy technologies with completely precious metal–free electrocatalysts. 
    more » « less