Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper describes the development of mixed B-site pyrochlore Y2MnRuO7electrocatalyst for oxygen evolution reaction (OER) in acidic media, a challenge for the development of low-temperature electrolyzer for green hydrogen production. Recently, several theories have been developed to understand the reaction mechanism for OER, though there is an uncertainty in most of the cases, due to the complex surface structures. Several key factors such as lattice oxygen, defect, electronic structure, oxidation state, hydroxyl group and conductivity were identified and shown to be important to the OER activity. The contribution of each factor to the performance however is often not well understood, limiting their impact in guiding the design of OER electrocatalysts. In this work, we showed mixed B-site pyrochlore Y2MnRuO7catalyst exhibits 14 times higher turnover frequency (TOF) than RuO2while maintaining a low overpotential of ~ 300 mV for the entire testing period of 24 h in acidic electrolyte. X-ray photoelectron spectroscopy (XPS) analysis reveals that this B-site mixed pyrochlore Y2MnRuO7has a higher oxidation state of Ru than those of Y2Ru2O7, which could be crucial for improving OER performance as the broadened and lowered Ru 4d band resulted from the B-site substitution by Mn is beneficial to the OER kinetics.more » « less
-
Free, publicly-accessible full text available October 14, 2026
-
Free, publicly-accessible full text available August 27, 2026
-
PerspectiveOn the Surface Compositions of Molybdenum Carbide Nanoparticles for Electrocatalytic ApplicationsSiying Yu and Hong Yang *Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 600 S. Mathews, Urbana, IL 61801, USA* Correspondence: hy66@illinois.eduReceived: 28 November 2024; Accepted: 2 December 2024; Published: 6 December 2024 Abstract: Molybdenum carbide has attracted much research attention for its precious metal-like catalytic properties, especially in hydrogen-involved reactions. It possesses rich crystal and surface structures leading to different activity and product selectivity. With advances in nanoengineering and new understanding of their surfaces and interfaces, one can control the transition between different phases and surface structures for molybdenum carbide nanoparticles. In this context, it is essential to understand their surface compositions and structures under operating conditions in addition to their intrinsic ones under ambient conditions without external cues. The necessity of surface study also comes from the mild oxidation brought by passivation in carbide nanoparticles. made using the bottom-up synthesis or solid-gas phase temperature-programmed reduction. In this perspective, we first introduce the relevant crystal structures of molybdenum carbides and highlight the features of the three types of chemical bonding within. We then briefly review the studies of thermodynamically favored surface components and nanostructures for partially oxidized molybdenum carbide nanoparticles based on both experimental and theoretical data. An electrochemical oxidation method is used to illustrate the feasibility in controlling and understanding the surface oxidation. Finally, structure-property relationship is discussed with several recent examples, focusing on the effect of phase dependency on the adsorption energy of reaction intermediates.more » « less
-
As the development of polymer electrolyte membrane fuel cells (PEMFCs) has sped up in recent years, producing active and durable electrocatalysts has become an increasingly important technical challenge. Platinum–cobalt (Pt–Co) alloy electrocatalyst has been commercially applied to hydrogen-powered fuel cell vehicles, and their intermetallic forms promise better durability, which is crucial to satisfy the 8000 h lifetime target of heavy-duty vehicles and other transportation options. In this feature article, we first present the atomically ordered structures of Pt–Co intermetallic, then discuss the thermodynamic and kinetic driving forces for making the PtCo-based intermetallic nanoparticles with desired structural attributes, followed by recent examples to illustrate how to achieve better control in composition, size, and shape. Discussion on the relationship between the key structural features and catalytic performance is focused on the application of Pt–Co intermetallic nanostructures as oxygen reduction reaction (ORR) electrocatalysts for hydrogen-powered PEMFCs. We emphasize specifically the importance of intermetallic structures for enhancing the durability and summarize the characterizations of their electrocatalytic performance in both three-electrode system and full cell studies. Finally, we provide our perspectives on the design, synthesis, characterization, and property studies of Pt–Co intermetallic nanoparticles as ORR electrocatalysts. This article should provide a new understanding on the design of ORR electrocatalytic applications using this class of intermetallics.more » « less
An official website of the United States government
