skip to main content

Title: Distributionally robust learning-to-rank under the Wasserstein metric
Despite their satisfactory performance, most existing listwise Learning-To-Rank (LTR) models do not consider the crucial issue of robustness. A data set can be contaminated in various ways, including human error in labeling or annotation, distributional data shift, and malicious adversaries who wish to degrade the algorithm’s performance. It has been shown that Distributionally Robust Optimization (DRO) is resilient against various types of noise and perturbations. To fill this gap, we introduce a new listwise LTR model called Distributionally Robust Multi-output Regression Ranking (DRMRR) . Different from existing methods, the scoring function of DRMRR was designed as a multivariate mapping from a feature vector to a vector of deviation scores, which captures local context information and cross-document interactions. In this way, we are able to incorporate the LTR metrics into our model. DRMRR uses a Wasserstein DRO framework to minimize a multi-output loss function under the most adverse distributions in the neighborhood of the empirical data distribution defined by a Wasserstein ball. We present a compact and computationally solvable reformulation of the min-max formulation of DRMRR. Our experiments were conducted on two real-world applications: medical document retrieval and drug response prediction, showing that DRMRR notably outperforms state-of-the-art LTR models. We also conducted an extensive analysis to examine the resilience of DRMRR against various types of noise: Gaussian noise, adversarial perturbations, and label poisoning. Accordingly, DRMRR is not only able to achieve significantly better performance than other baselines, but it can maintain a relatively stable performance as more noise is added to the data.  more » « less
Award ID(s):
2200052 1914792 1664644
Author(s) / Creator(s):
; ;
Srinivasan, Kathiravan
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Distributionally robust optimization (DRO) is a powerful framework for training robust models against data distribution shifts. This paper focuses on constrained DRO, which has an explicit characterization of the robustness level. Existing studies on constrained DRO mostly focus on convex loss function, and exclude the practical and challenging case with non-convex loss function, e.g., neural network. This paper develops a stochastic algorithm and its performance analysis for non-convex constrained DRO. The computational complexity of our stochastic algorithm at each iteration is independent of the overall dataset size, and thus is suitable for large-scale applications. We focus on the general Cressie-Read family divergence defined uncertainty set which includes chi^2-divergences as a special case. We prove that our algorithm finds an epsilon-stationary point with an improved computational complexity than existing methods. Our method also applies to the smoothed conditional value at risk (CVaR) DRO.

    more » « less
  2. Distributionally robust optimization (DRO) is a powerful tool for decision making under uncertainty. It is particularly appealing because of its ability to leverage existing data. However, many practical problems call for decision- making with some auxiliary information, and DRO in the context of conditional distributions is not straightforward. We propose a conditional kernel distributionally robust optimiza- tion (CKDRO) method that enables robust decision making under conditional distributions through kernel DRO and the conditional mean operator in the reproducing kernel Hilbert space (RKHS). In particular, we consider problems where there is a correlation between the unknown variable y and an auxiliary observable variable x. Given past data of the two variables and a queried auxiliary variable, CKDRO represents the conditional distribution P(y|x) as the conditional mean operator in the RKHS space and quantifies the ambiguity set in the RKHS as well, which depends on the size of the dataset as well as the query point. To justify the use of RKHS, we demonstrate that the ambiguity set defined in RKHS can be viewed as a ball under a metric that is similar to the Wasserstein metric. The DRO is then dualized and solved via a finite dimensional convex program. The proposed CKDRO approach is applied to a generation scheduling problem and shows that the result of CKDRO is superior to common benchmarks in terms of quality and robustness. 
    more » « less
  3. (Ed.)
    We consider statistical methods that invoke a min-max distributionally robust formulation to extract good out-of-sample performance in data-driven optimization and learning problems. Acknowledging the distributional uncertainty in learning from limited samples, the min-max formulations introduce an adversarial inner player to explore unseen covariate data. The resulting distributionally robust optimization (DRO) formulations, which include Wasserstein DRO formulations (our main focus), are specified using optimal transportation phenomena. Upon describing how these infinite-dimensional min-max problems can be approached via a finite-dimensional dual reformulation, this tutorial moves into its main component, namely, explaining a generic recipe for optimally selecting the size of the adversary’s budget. This is achieved by studying the limit behavior of an optimal transport projection formulation arising from an inquiry on the smallest confidence region that includes the unknown population risk minimizer. Incidentally, this systematic prescription coincides with those in specific examples in high-dimensional statistics and results in error bounds that are free from the curse of dimensions. Equipped with this prescription, we present a central limit theorem for the DRO estimator and provide a recipe for constructing compatible confidence regions that are useful for uncertainty quantification. The rest of the tutorial is devoted to insights into the nature of the optimizers selected by the min-max formulations and additional applications of optimal transport projections. 
    more » « less
  4. To train machine learning models that are robust to distribution shifts in the data, distributionally robust optimization (DRO) has been proven very effective. However, the existing approaches to learning a distributionally robust model either require solving complex optimization problems such as semidefinite programming or a first-order method whose convergence scales linearly with the number of data samples -- which hinders their scalability to large datasets. In this paper, we show how different variants of DRO are simply instances of a finite-sum composite optimization for which we provide scalable methods. We also provide empirical results that demonstrate the effectiveness of our proposed algorithm with respect to the prior art in order to learn robust models from very large datasets. 
    more » « less
  5. Summary Estimators based on Wasserstein distributionally robust optimization are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance from the underlying empirical measure in a Wasserstein sense. While motivated by the need to identify optimal model parameters or decision choices that are robust to model misspecification, these distributionally robust estimators recover a wide range of regularized estimators, including square-root lasso and support vector machines, among others. This paper studies the asymptotic normality of these distributionally robust estimators as well as the properties of an optimal confidence region induced by the Wasserstein distributionally robust optimization formulation. In addition, key properties of min-max distributionally robust optimization problems are also studied; for example, we show that distributionally robust estimators regularize the loss based on its derivative, and we also derive general sufficient conditions which show the equivalence between the min-max distributionally robust optimization problem and the corresponding max-min formulation. 
    more » « less