skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Connectivity constrains quantum codes
Quantum low-density parity-check (LDPC) codes are an important class of quantum error correcting codes. In such codes, each qubit only affects a constant number of syndrome bits, and each syndrome bit only relies on some constant number of qubits. Constructing quantum LDPC codes is challenging. It is an open problem to understand if there exist good quantum LDPC codes, i.e. with constant rate and relative distance. Furthermore, techniques to perform fault-tolerant gates are poorly understood. We present a unified way to address these problems. Our main results are a) a bound on the distance, b) a bound on the code dimension and c) limitations on certain fault-tolerant gates that can be applied to quantum LDPC codes. All three of these bounds are cast as a function of the graph separator of the connectivity graph representation of the quantum code. We find that unless the connectivity graph contains an expander, the code is severely limited. This implies a necessary, but not sufficient, condition to construct good codes. This is the first bound that studies the limitations of quantum LDPC codes that does not rely on locality. As an application, we present novel bounds on quantum LDPC codes associated with local graphs in D -dimensional hyperbolic space.  more » « less
Award ID(s):
1763311
PAR ID:
10425147
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Quantum
Volume:
6
ISSN:
2521-327X
Page Range / eLocation ID:
711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Fault-tolerant syndrome extraction is a key ingredient in implementing fault-tolerant quantum computation. While conventional methods use a number of extra qubits that are linear in the weight of the syndrome, several improvements have been introduced using flag gadgets. In this work, we develop a framework to design flag gadgets using classical codes. Using this framework, we show how to perform fault-tolerant syndrome extraction for any stabilizer code with arbitrary distance using exponentially fewer qubits than conventional methods when qubit measurement and reset are relatively slow compared to a round of error correction. In particular, our method requires only ?? flag qubits to fault-tolerantly measure a weight ? stabilizer. We further take advantage of the saving provided by our construction to fault-tolerantly measure multiple stabilizers using a single gadget and show that it maintains the same exponential advantage when it is used to fault-tolerantly extract the syndromes of quantum low-density parity-check codes. Using the developed framework, we perform computer-assisted search to find several small examples where our constructions reduce the number of qubits required. These small examples may be relevant to near-term experiments on small-scale quantum computers. 
    more » « less
  2. A basic question in the theory of fault-tolerant quantum computation is to understand the fundamental resource costs for performing a universal logical set of gates on encoded qubits to arbitrary accuracy. Here we consider qubits encoded with constant space overhead (i.e. finite encoding rate) in the limit of arbitrarily large code distance d through the use of topological codes associated to triangulations of hyperbolic surfaces. We introduce explicit protocols to demonstrate how Dehn twists of the hyperbolic surface can be implemented on the code through constant depth unitary circuits, without increasing the space overhead. The circuit for a given Dehn twist consists of a permutation of physical qubits, followed by a constant depth local unitary circuit, where locality here is defined with respect to a hyperbolic metric that defines the code. Applying our results to the hyperbolic Fibonacci Turaev-Viro code implies the possibility of applying universal logical gate sets on encoded qubits through constant depth unitary circuits and with constant space overhead. Our circuits are inherently protected from errors as they map local operators to local operators while changing the size of their support by at most a constant factor; in the presence of noisy syndrome measurements, our results suggest the possibility of universal fault tolerant quantum computation with constant space overhead and time overhead of O ( d / log ⁡ d ) . For quantum circuits that allow parallel gate operations, this yields the optimal scaling of space-time overhead known to date. 
    more » « less
  3. Meka, Raghu (Ed.)
    Preparing encoded logical states is the first step in a fault-tolerant quantum computation. Standard approaches based on concatenation or repeated measurement incur a significant time overhead. The Raussendorf-Bravyi-Harrington cluster state [Raussendorf et al., 2005] offers an alternative: a single-shot preparation of encoded states of the surface code, by means of a constant depth quantum circuit, followed by a single round of measurement and classical feedforward [Bravyi et al., 2020]. In this work we generalize this approach and prove that single-shot logical state preparation can be achieved for arbitrary quantum LDPC codes. Our proof relies on a minimum-weight decoder and is based on a generalization of Gottesman’s clustering-of-errors argument [Gottesman, 2014]. As an application, we also prove single-shot preparation of the encoded GHZ state in arbitrary quantum LDPC codes. This shows that adaptive noisy constant depth quantum circuits are capable of generating generic robust long-range entanglement. 
    more » « less
  4. Quantum low-density parity-check (LDPC) codes are a promising family of quantum error-correcting codes for fault tolerant quantum computing with low overhead. Decoding quantum LDPC codes on quantum erasure channels has received more attention recently due to advances in erasure conversion for various types of qubits including neutral atoms, trapped ions, and superconducting qubits. Belief propagation with guided decimation (BPGD) decoding of quantum LDPC codes has demonstrated good performance in bit-flip and depolarizing noise. In this work, we apply BPGD decoding to quantum erasure channels. Using a natural modification, we show that BPGD offers competitive performance on quantum erasure channels for multiple families of quantum LDPC codes. Furthermore, we show that the performance of BPGD decoding on erasure channels can sometimes be improved significantly by either adding damping or adjusting the initial channel log-likelihood ratio for bits that are not erased. More generally, our results demonstrate BPGD is an effective general-purpose solution for erasure decoding across the quantum LDPC landscape. 
    more » « less
  5. Geometric locality is an important theoretical and practical factor for quantum low-density parity-check (qLDPC) codes that affects code performance and ease of physical realization. For device architectures restricted to two-dimensional (2D) local gates, naively implementing the high-rate codes suitable for low-overhead fault-tolerant quantum computing incurs prohibitive overhead. In this work, we present an error-correction protocol built on a bilayer architecture that aims to reduce operational overheads when restricted to 2D local gates by measuring some generators less frequently than others. We investigate the family of bivariate-bicycle qLDPC codes and show that they are well suited for a parallel syndrome-measurement scheme using fast routing with local operations and classical communication (LOCC). Through circuit-level simulations, we find that in some parameter regimes, bivariate-bicycle codes implemented with this protocol have logical error rates comparable to the surface code while using fewer physical qubits. Published by the American Physical Society2025 
    more » « less