Abstract We establish an equivalence between a family of adversarial training problems for non-parametric binary classification and a family of regularized risk minimization problems where the regularizer is a nonlocal perimeter functional. The resulting regularized risk minimization problems admit exact convex relaxations of the type $$L^1+\text{(nonlocal)}\operatorname{TV}$$, a form frequently studied in image analysis and graph-based learning. A rich geometric structure is revealed by this reformulation which in turn allows us to establish a series of properties of optimal solutions of the original problem, including the existence of minimal and maximal solutions (interpreted in a suitable sense) and the existence of regular solutions (also interpreted in a suitable sense). In addition, we highlight how the connection between adversarial training and perimeter minimization problems provides a novel, directly interpretable, statistical motivation for a family of regularized risk minimization problems involving perimeter/total variation. The majority of our theoretical results are independent of the distance used to define adversarial attacks.
more »
« less
The multimarginal optimal transport formulation of adversarial multiclass classification
We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.
more »
« less
- PAR ID:
- 10425246
- Editor(s):
- Bubeck, Sebastien
- Date Published:
- Journal Name:
- Journal of machine learning research
- ISSN:
- 1533-7928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the domains of dataset construction and crowdsourcing, a notable challenge is to aggregate labels from a heterogeneous set of labelers, each of whom is potentially an expert in some subset of tasks (and less reliable in others). To reduce costs of hiring human labelers or training automated labeling systems, it is of interest to minimize the number of labelers while ensuring the reliability of the resulting dataset. We model this as the problem of performing K-class classification using the predictions of smaller classifiers, each trained on a subset of [K], and derive bounds on the number of classifiers needed to accurately infer the true class of an unlabeled sample under both adversarial and stochastic assumptions. By exploiting a connection to the classical set cover problem, we produce a near-optimal scheme for designing such configurations of classifiers which recovers the well known one-vs.-one classification approach as a special case. Experiments with the MNIST and CIFAR-10 datasets demonstrate the favorable accuracy (compared to a centralized classifier) of our aggregation scheme applied to classifiers trained on subsets of the data. These results suggest a new way to automatically label data or adapt an existing set of local classifiers to larger-scale multiclass problems.more » « less
-
Wasserstein Barycenter is a principled approach to represent the weighted mean of a given set of probability distributions, utilizing the geometry induced by optimal transport. In this work, we present a novel scalable algorithm to approximate the Wasserstein Barycenters aiming at highdimensional applications in machine learning. Our proposed algorithm is based on the Kantorovich dual formulation of the Wasserstein-2 distance as well as a recent neural network architecture, input convex neural network, that is known to parametrize convex functions. The distinguishing features of our method are: i) it only requires samples from the marginal distributions; ii) unlike the existing approaches, it represents the Barycenter with a generative model and can thus generate infinite samples from the barycenter without querying the marginal distributions; iii) it works similar to Generative Adversarial Model in one marginal case. We demonstrate the efficacy of our algorithm by comparing it with the state-of-art methods in multiple experiments.more » « less
-
This paper presents a black-box framework for accelerating packing optimization solvers. Our method applies to packing linear programming problems and a family of convex programming problems with linear constraints. The framework is designed for high-dimensional problems, for which the number of variables n is much larger than the number of measurements m. Given an [Formula: see text] problem, we construct a smaller [Formula: see text] problem, whose solution we use to find an approximation to the optimal solution. Our framework can accelerate both exact and approximate solvers. If the solver being accelerated produces an α-approximation, then we produce a [Formula: see text]-approximation of the optimal solution to the original problem. We present worst-case guarantees on run time and empirically demonstrate speedups of two orders of magnitude.more » « less
-
null (Ed.)Mitigating label noise is a crucial problem in classification. Noise filtering is an effective method of dealing with label noise which does not need to estimate the noise rate or rely on any loss function. However, most filtering methods focus mainly on binary classification, leaving the more difficult counterpart problem of multiclass classification relatively unexplored. To remedy this deficit, we present a definition for label noise in a multiclass setting and propose a general framework for a novel label noise filtering learning method for multiclass classification. Two examples of noise filtering methods for multiclass classification, multiclass complete random forest (mCRF) and multiclass relative density, are derived from their binary counterparts using our proposed framework. In addition, to optimize the NI_threshold hyperparameter in mCRF, we propose two new optimization methods: a new voting cross-validation method and an adaptive method that employs a 2-means clustering algorithm. Furthermore, we incorporate SMOTE into our label noise filtering learning framework to handle the ubiquitous problem of imbalanced data in multiclass classification. We report experiments on both synthetic data sets and UCI benchmarks to demonstrate our proposed methods are highly robust to label noise in comparison with state-of-the-art baselines. All code and data results are available at https://github.com/syxiaa/Multiclass-Label-Noise-Filtering-Learning.more » « less